Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 917108, 11 pages
http://dx.doi.org/10.1155/2010/917108
Review Article

The Receptor for Advanced Glycation End Products (RAGE) and the Lung

School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland

Received 7 August 2009; Revised 27 September 2009; Accepted 9 October 2009

Academic Editor: Karl Chai

Copyright © 2010 Stephen T. Buckley and Carsten Ehrhardt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Neeper, A. M. Schmidt, J. Brett et al., “Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins,” Journal of Biological Chemistry, vol. 267, no. 21, pp. 14998–15004, 1992. View at Google Scholar · View at Scopus
  2. A. M. Schmidt, M. Vianna, M. Gerlach et al., “Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface,” Journal of Biological Chemistry, vol. 267, no. 21, pp. 14987–14997, 1992. View at Google Scholar · View at Scopus
  3. A. M. Schmidt, S. D. Yan, S. F. Yan, and D. M. Stern, “The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses,” Journal of Clinical Investigation, vol. 108, no. 7, pp. 949–955, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Chavakis, A. Bierhaus, N. Al-Fakhri et al., “The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment,” Journal of Experimental Medicine, vol. 198, no. 10, pp. 1507–1515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circulation Research, vol. 84, no. 5, pp. 489–497, 1999. View at Google Scholar · View at Scopus
  6. H. Yonekura, Y. Yamamoto, S. Sakurai et al., “Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury,” Biochemical Journal, vol. 370, no. 3, pp. 1097–1109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Hanford, J. J. Enghild, Z. Valnickova et al., “Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE),” Journal of Biological Chemistry, vol. 279, no. 48, pp. 50019–50024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Raucci, S. Cugusi, A. Antonelli et al., “A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10),” The FASEB Journal, vol. 22, no. 10, pp. 3716–3727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. V. Gefter, A. L. Shaufl, M. P. Fink, and R. L. Delude, “Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines,” Cell and Tissue Research, vol. 337, no. 1, pp. 79–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Brett, A. M. Schmidt, S. D. Yan et al., “Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues,” American Journal of Pathology, vol. 143, no. 6, pp. 1699–1712, 1993. View at Google Scholar · View at Scopus
  11. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: mining tens of millions of expression profiles—database and tools update,” Nucleic Acids Research, vol. 35, database issue, pp. D760–D765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Demling, C. Ehrhardt, M. Kasper, M. Laue, L. Knels, and E. P. Rieber, “Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells,” Cell and Tissue Research, vol. 323, no. 3, pp. 475–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Morbini, C. Villa, I. Campo, M. Zorzetto, S. Inghilleri, and M. Luisetti, “The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease?” Modern Pathology, vol. 19, no. 11, pp. 1437–1445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Fehrenbach, M. Kasper, T. Tschernig, M. S. Shearman, D. Schuh, and M. Müller, “Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung,” Cellular and Molecular Biology, vol. 44, no. 7, pp. 1147–1157, 1998. View at Google Scholar · View at Scopus
  15. F. Katsuoka, Y. Kawakami, T. Arai et al., “Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene,” Biochemical and Biophysical Research Communications, vol. 238, no. 2, pp. 512–516, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Nakano, K. Fukuhara-Takaki, T. Jono et al., “Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE,” Journal of Biochemistry, vol. 139, no. 5, pp. 821–829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Queisser, F. M. Kouri, M. Königshoff et al., “Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 3, pp. 337–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Dahlin, E. M. Mager, L. Allen et al., “Identification of genes differentially expressed in rat alveolar type I cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 3, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Koslowski, K. Barth, A. Augstein et al., “A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression,” Histochemistry and Cell Biology, vol. 121, no. 6, pp. 509–519, 2004. View at Google Scholar · View at Scopus
  20. M. Shirasawa, N. Fujiwara, S. Hirabayashi et al., “Receptor for advanced glycation end-products is a marker of type I lung alveolar cells,” Genes to Cells, vol. 9, no. 2, pp. 165–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Bartling, H.-S. Hofmann, B. Weigle, R.-E. Silber, and A. Simm, “Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma,” Carcinogenesis, vol. 26, no. 2, pp. 293–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Englert, L. J. Sparvero, A. A. Amoscato, M. T. Lotze, and T. D. Oury, “RAGE and the lung extracellular matrix: a novel protective function,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 1, A4990, 2009. View at Google Scholar
  23. O. Hori, J. Brett, T. Slattery et al., “The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system,” Journal of Biological Chemistry, vol. 270, no. 43, pp. 25752–25761, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. P.-P. Lizotte, L. E. Hanford, J. J. Enghild, E. Nozik-Grayck, B.-L. Giles, and T. D. Oury, “Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung,” BMC Developmental Biology, vol. 7, article 15, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Sparvero, D. Asafu-Adjei, R. Kang et al., “RAGE (Receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation,” Journal of Translational Medicine, vol. 7, article 17, pp. 1–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. D. Logsdon, M. K. Fuentes, E. H. Huang, and T. Arumugam, “RAGE and RAGE ligands in cancer,” Current Molecular Medicine, vol. 7, no. 8, pp. 777–789, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W. A. Franklin, “RAGE in lung tumors,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 2, pp. 106–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Schraml, R. Shipman, M. Colombi, and C. U. Ludwig, “Identification of genes differentially expressed in normal lung and non-small cell lung carcinoma tissue,” Cancer Research, vol. 54, no. 19, pp. 5236–5240, 1994. View at Google Scholar · View at Scopus
  29. P. Schraml, I. Bendik, and C. U. Ludwig, “Differential messenger RNA and protein expression of the receptor for advanced glycosylated end products in normal lung and non-small cell lung carcinoma,” Cancer Research, vol. 57, no. 17, pp. 3669–3671, 1997. View at Google Scholar · View at Scopus
  30. S. Schenk, P. Schraml, I. Bendik, and C. U. Ludwig, “A novel polymorphism in the promoter of the RAGE gene is associated with non-small cell lung cancer,” Lung Cancer, vol. 32, no. 1, pp. 7–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. H.-S. Hofmann, G. Hansen, S. Burdach, B. Bartling, R.-E. Silber, and A. Simm, “Discrimination of human lung neoplasm from normal lung by two target genes,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 5, pp. 516–519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Stav, I. Bar, and J. Sandbank, “Usefulness of CDK5RAP3, CCNB2, and RAGE genes for the diagnosis of lung adenocarcinoma,” International Journal of Biological Markers, vol. 22, no. 2, pp. 108–113, 2007. View at Google Scholar · View at Scopus
  33. J.-H. Rho, M. H. A. Roehrl, and J. Y. Wang, “Glycoproteomic analysis of human lung adenocarcinomas using glycoarrays and tandem mass spectrometry: differential expression and glycosylation patterns of vimentin and fetuin A isoforms,” Protein Journal, vol. 28, no. 3-4, pp. 148–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H.-L. Hsieh, B. W. Schäfer, N. Sasaki, and C. W. Heizmann, “Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays,” Biochemical and Biophysical Research Communications, vol. 307, no. 2, pp. 375–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Bartling, N. Demling, R.-E. Silber, and A. Simm, “Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by the receptor for advanced glycation end-products,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 1, pp. 83–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kobayashi, H. Kubo, T. Suzuki et al., “Endogenous secretory receptor for advanced glycation end products in non-small cell lung carcinoma,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 2, pp. 184–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Campana, L. Bosurgi, and P. Rovere-Querini, “HMGB1: a two-headed signal regulating tumor progression and immunity,” Current Opinion in Immunology, vol. 20, no. 5, pp. 518–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Taguchi, D. C. Blood, G. del Toro et al., “Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases,” Nature, vol. 405, no. 6784, pp. 354–360, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Nabeshima, T. Inoue, Y. Shimao, and T. Sameshima, “Matrix metalloproteinases in tumor invasion: role for cell migration,” Pathology International, vol. 52, no. 4, pp. 255–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. D. G. Beer, S. L. R. Kardia, C.-C. Huang et al., “Gene-expression profiles predict survival of patients with lung adenocarcinoma,” Nature Medicine, vol. 8, no. 8, pp. 816–824, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Diederichs, E. Bulk, B. Steffen et al., “S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer,” Cancer Research, vol. 64, no. 16, pp. 5564–5569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kimura, Y. Endo, Y. Yonemura et al., “Clinical significance of S100A4 and E-cadherin-related adhesion molecules in non-small cell lung cancer,” International Journal of Oncology, vol. 16, no. 6, pp. 1125–1131, 2000. View at Google Scholar · View at Scopus
  43. N. Miyazaki, Y. Abe, Y. Oida et al., “Poor outcome of patients with pulmonary adenocarcinoma showing decreased E-cadherin combined with increased S100A4 expression,” International Journal of Oncology, vol. 28, no. 6, pp. 1369–1374, 2006. View at Google Scholar · View at Scopus
  44. I. Brüske-Hohlfeld, “Environmental and occupational risk factors for lung cancer,” Methods in Molecular Biology, vol. 472, pp. 3–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N.-Y. Xu, S.-P. Zhang, J.-H. Nie, J.-X. Li, and J. Tong, “Radon-induced proteomic profile of lung tissue in rats,” Journal of Toxicology and Environmental Health, Part A, vol. 71, no. 6, pp. 361–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Zhang, N. Xu, J. Nie, L. Dong, J. Li, and J. Tong, “Proteomic alteration in lung tissue of rats exposed to cigarette smoke,” Toxicology Letters, vol. 178, no. 3, pp. 191–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Y. Xu, S. P. Zhang, L. Dong, J. H. Nie, and J. Tong, “Proteomic analysis of lung tissue of rats exposed to cigarette smoke and radon,” Journal of Toxicology and Environmental Health, Part A, vol. 72, no. 11, pp. 752–758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. R. Reynolds, S. D. Kasteler, M. G. Cosio, A. Sturrock, T. Huecksteadt, and J. R. Hoidal, “RAGE: developmental expression and positive feedback regulation by Egr-1 during cigarette smoke exposure in pulmonary epithelial cells,” American Journal of Physiology, vol. 294, no. 6, pp. L1094–L1101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. D. Kasteler, P. R. Reynolds, and J. R. Hoidal, “Downstream effects of receptors for advanced glycation end-products (RAGE) in pulmonary epithelial cells exposed to cigarette smoke,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 1, A333, 2008. View at Google Scholar
  50. P. R. Reynolds, R. E. Schmitt, S. D. Kasteler, and J. R. Hoidal, “The receptor for advanced glycation end products (RAGE) activates Tas and NF-κB in pulmonary epithelial cells exposed to cigarette smoke,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 1, A4185, 2009. View at Google Scholar
  51. A. S. De Vriese, R. G. Tilton, S. Mortier, and N. H. Lameire, “Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia,” Nephrology Dialysis Transplantation, vol. 21, no. 9, pp. 2549–2555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. H. Li, W. Wang, X. R. Huang et al., “Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway,” American Journal of Pathology, vol. 164, no. 4, pp. 1389–1397, 2004. View at Google Scholar · View at Scopus
  53. J.-R. Xia, N.-F. Liu, and N.-X. Zhu, “Specific siRNA targeting the receptor for advanced glycation end products inhibits experimental hepatic fibrosis in rats,” International Journal of Molecular Sciences, vol. 9, no. 4, pp. 638–661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. E. Hanford, C. L. Fattman, L. M. Schaefer, J. J. Enghild, Z. Valnickova, and T. D. Oury, “Regulation of receptor for advanced glycation end products during bleomycin-induced lung injury,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 3, supplement, pp. S77–S81, 2003. View at Google Scholar · View at Scopus
  55. J. M. Englert, L. E. Hanford, N. Kaminski et al., “A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis,” American Journal of Pathology, vol. 172, no. 3, pp. 583–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Ramsgaard, J. M. Englert, C. L. Tobolewski, and T. D. Oury, “The role of RAGE in pulmonary silicosis,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 1, A740, 2008. View at Google Scholar
  57. M. Kasper, D. Seidel, L. Knels et al., “Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-ß1,” Histochemistry and Cell Biology, vol. 121, no. 2, pp. 131–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Bargagli, F. Penza, N. Bianchi et al., “Controversial role of RAGE in the pathogenesis of idiopathic pulmonary fibrosis,” Respiratory Physiology and Neurobiology, vol. 165, no. 2-3, pp. 119–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Selman, G. Carrillo, A. Estrada et al., “Accelerated variant of idiopathic pulmonary fibrosis: clinical behavior and gene expression pattern,” PLoS One, vol. 2, no. 5, article e482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. I. O. Rosas, T. J. Richards, K. Konishi et al., “MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis,” PLoS Medicine, vol. 5, no. 4, article e93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. He, H. Kubo, K. Ishizawa et al., “The role of the receptor for advanced glycation end-products in lung fibrosis,” American Journal of Physiology, vol. 293, no. 6, pp. L1427–L1436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Tanaka, H. Yonekura, S.-I. Yamagishi, H. Fujimori, Y. Yamamoto, and H. Yamamoto, “The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-estradiol through sp-1 in human vascular endothelial cells,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25781–25790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Chen, T. Wang, X. Wang et al., “Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats,” Respiratory Research, vol. 10, no. 1, p. 55, 2009. View at Google Scholar · View at Scopus
  64. F. J. Accurso, “Introduction: the rational for early intervention in cystic fibrosis,” Pediatric Pulmonology, vol. 24, no. 2, pp. 132–133, 1997. View at Google Scholar · View at Scopus
  65. D. Foell, S. Seeliger, T. Vogl et al., “Expression of S100A12 (EN-RAGE) in cystic fibrosis,” Thorax, vol. 58, no. 7, pp. 613–617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Makam, D. Diaz, J. Laval et al., “Activation of critical, host-induced, metabolic and stress pathways marks neutrophil entry into cystic fibrosis lungs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5779–5783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. B. B. Moore and C. M. Hogaboam, “Murine models of pulmonary fibrosis,” American Journal of Physiology, vol. 294, no. 2, pp. L152–L160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Lucas, A. D. Verin, S. M. Black, and J. D. Catravas, “Regulators of endothelial and epithelial barrier integrity and function in acute lung injury,” Biochemical Pharmacology, vol. 77, no. 12, pp. 1763–1772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Uchida, M. Shirasawa, L. B. Ware et al., “Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 9, pp. 1008–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Su, J. W. Lee, Z. A. Matthay et al., “Activation of the a7 nAChR reduces acid-induced acute lung injury in mice and rats,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 2, pp. 186–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Zhang, S. Tasaka, Y. Shiraishi et al., “Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 4, pp. 356–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Su, M. R. Looney, N. Gupta, and M. A. Matthay, “Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury,” American Journal of Physiology, vol. 297, no. 1, pp. L1–L5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. P. R. Reynolds, R. E. Schmitt, S. D. Kasteler et al., “Receptors for advanced glycation end-products (RAGE) targeting protect against hyperoxia-induced lung injury in mice,” American Journal of Respiratory Cell and Molecular Biology. In press. View at Publisher · View at Google Scholar
  74. L. A. Parmley, N. D. Elkins, M. A. Fini, Y.-E. Liu, J. E. Repine, and R. M. Wright, “α-4/β-1 and α-L/β-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury,” British Journal of Pharmacology, vol. 152, no. 6, pp. 915–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. C. S. Calfee, L. B. Ware, M. D. Eisner et al., “Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury,” Thorax, vol. 63, no. 12, pp. 1083–1089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. A. Frank, R. Briot, J. W. Lee, A. Ishizaka, T. Uchida, and M. A. Matthay, “Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs,” American Journal of Physiology, vol. 293, no. 1, pp. L52–L59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Briot, J. A. Frank, T. Uchida, J. W. Lee, C. S. Calfee, and M. A. Matthay, “Elevated levels of the receptor for advanced glycation end products, a marker of alveolar epithelial type I cell injury, predict impaired alveolar fluid clearance in isolated perfused human lungs,” Chest, vol. 135, no. 2, pp. 269–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Wittkowski, A. Sturrock, M. A. D. van Zoelen et al., “Neutrophil-derived S100A12 in acute lung injury and respiratory distress syndrome,” Critical Care Medicine, vol. 35, no. 5, pp. 1369–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Abraham, J. Arcaroli, A. Carmody, H. Wang, and K. J. Tracey, “Cutting edge: HMG-1 as a mediator of acute lung inflammation,” Journal of Immunology, vol. 165, no. 6, pp. 2950–2954, 2000. View at Google Scholar · View at Scopus
  80. H. Ueno, T. Matsuda, S. Hashimoto et al., “Contributions of high mobility group box protein in experimental and clinical acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 12, pp. 1310–1316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Yamakawa, T. Uchida, M. A. Matthay, and K. Makita, “Expression of receptor for advanced glycation end-products (RAGE) in cultured alveolar epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 1, A723, 2008. View at Google Scholar
  82. E. Silva, J. Arcaroli, Q. He et al., “HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury,” Intensive Care Medicine, vol. 33, no. 10, pp. 1829–1839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Campo, P. Morbini, M. Zorzetto et al., “Expression of receptor for advanced glycation end products in sarcoid granulomas,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 5, pp. 498–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. A. van Zoelen, M. Schouten, A. F. de Vos et al., “The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia,” Journal of Immunology, vol. 182, no. 7, pp. 4349–4356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. D. van Zoelen, H. Yang, S. Florquin et al., “Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo,” Shock, vol. 31, no. 3, pp. 280–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. D. van Zoelen, K. F. van der Sluijs, A. Achouiti et al., “Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia,” Virology, vol. 391, no. 2, pp. 265–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. C. S. Calfee, M. M. Budev, M. A. Matthay et al., “Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation,” Journal of Heart and Lung Transplantation, vol. 26, no. 7, pp. 675–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. D. I. Sternberg, R. Gowda, D. Mehra et al., “Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice,” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 6, pp. 1576–1585, 2008. View at Publisher · View at Google Scholar · View at Scopus