Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 952047, 10 pages
http://dx.doi.org/10.1155/2010/952047
Research Article

Quantitative Proteomics Analysis of Maternal Plasma in Down Syndrome Pregnancies Using Isobaric Tagging Reagent (iTRAQ)

1Department of Biomedicine, University Women’s Hospital, 4031 Basel, Switzerland
2Mass Spectrometry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
3Biomarker Discovery Laboratory, Department of Obstetrics and Gynecology, National University of Singapore, 19077, Singapore

Received 3 July 2009; Accepted 21 August 2009

Academic Editor: Benjamin A. Garcia

Copyright © 2010 Varaprasad Kolla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Eddleman, F. D. Malone, L. Sullivan et al., “Pregnancy loss rates after midtrimester amniocentesis,” Obstetrics and Gynecology, vol. 108, no. 5, pp. 1067–1072, 2006. View at Publisher · View at Google Scholar
  2. E. Guetta, M. J. Simchen, K. Mammon-Daviko et al., “Analysis of fetal blood cells in the maternal circulation: challenges, ongoing efforts, and potential solutions,” Stem Cells and Development, vol. 13, no. 1, pp. 93–99, 2004. View at Publisher · View at Google Scholar
  3. Y. M. D. Lo, “Recent advances in fetal nucleic acids in maternal plasma,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 3, pp. 293–296, 2005. View at Publisher · View at Google Scholar
  4. R. D. Wilson, “Cell-free fetal DNA in the maternal circulation and its future uses in obstetrics,” Journal of Obstetrics and Gynaecology Canada, vol. 27, no. 1, pp. 54–62, 2005. View at Google Scholar · View at Scopus
  5. K. Spencer, “Aneuploidy screening in the first trimester,” American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, vol. 145, no. 1, pp. 18–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ricco, A. M. Dalena, T. Valente et al., “Quantitative study of placental villi in trisomy by analytical morphometry,” Analytical and Quantitative Cytology and Histology, vol. 31, no. 1, pp. 41–48, 2009. View at Google Scholar
  7. S.-J. Park, W.-G. Yoon, J.-S. Song et al., “Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Proteomics, vol. 6, no. 1, pp. 349–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. T. Tsangaris, A. Kolialexi, P. M. Karamessinis et al., “The normal human amniotic fluid supernatant proteome,” In Vivo, vol. 20, no. 4, pp. 479–490, 2006. View at Google Scholar · View at Scopus
  9. S. R. Nagalla, J. A. Canick, T. Jacob et al., “Proteomic analysis of maternal serum in down syndrome: identification of novel protein biomarkers,” Journal of Proteome Research, vol. 6, no. 4, pp. 1245–1257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Busch, S. Michel, C. Hoppe, D. Driesch, U. Claussen, and F. Von Eggeling, “Proteome analysis of maternal serum samples for trisomy 21 pregnancies using proteinchip arrays and bioinformatics,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 3, pp. 341–343, 2005. View at Publisher · View at Google Scholar
  11. A. Kolialexi, A. Mavrou, G. Spyrou, and G. T. Tsangaris, “Mass spectrometry-based proteomics in reproductive medicine,” Mass Spectrometry Reviews, vol. 27, no. 6, pp. 624–634, 2008. View at Publisher · View at Google Scholar
  12. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Google Scholar · View at Scopus
  13. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular & Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. G. Righetti, E. Boschetti, L. Lomas, and A. Citterio, “Protein equalizer technology : the quest for a “democratic proteome”,” Proteomics, vol. 6, no. 14, pp. 3980–3992, 2006. View at Google Scholar
  15. R. D. Unwin, A. Pierce, R. B. Watson, D. W. Sternberg, and A. D. Whetton, “Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells,” Molecular & Cellular Proteomics, vol. 4, no. 7, pp. 924–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Elias and S. P. Gygi, “Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry,” Nature Methods, vol. 4, no. 3, pp. 207–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. V. Shilov, S. L. Seymourt, A. A. Patel et al., “The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra,” Molecular & Cellular Proteomics, vol. 6, no. 9, pp. 1638–1655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Mi, N. Guo, A. Kejariwal, and P. D. Thomas, “PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways,” Nucleic Acids Research, vol. 35, database issue, pp. D247–D252, 2007. View at Publisher · View at Google Scholar
  19. A. Glen, C. S. Gan, F. C. Hamdy et al., “iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression,” Journal of Proteome Research, vol. 7, no. 3, pp. 897–907, 2008. View at Publisher · View at Google Scholar
  20. C. S. Gan, P. K. Chong, T. K. Pham, and P. C. Wright, “Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ),” Journal of Proteome Research, vol. 6, no. 2, pp. 821–827, 2007. View at Publisher · View at Google Scholar
  21. X. Song, J. Bandow, and J. Sherman, “iTRAQ experimental design for plasma biomarker discovery,” Journal of Proteomic Research, vol. 7, no. 7, pp. 2952–2958, 2008. View at Google Scholar
  22. E. L. Skornicka, N. Kiyatkina, M. C. Weber, M. L. Tykocinski, and P. H. Koo, “Pregnancy zone protein is a carrier and modulator of placental protein-14 in T-cell growth and cytokine production,” Cellular Immunology, vol. 232, no. 1-2, pp. 144–156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Teller, C. Russo, L. M. DeBusk et al., “Presence of soluble amyloid ß-peptide precedes amyloid plaque formation in Down's syndrome,” Nature Medicine, vol. 2, no. 1, pp. 93–95, 1996. View at Google Scholar · View at Scopus
  24. A. M. Vinggaard, J. J. Provost, J. H. Exton, and H. S. Hansen, “Arf and RhoA regulate both the cytosolic and the membrane-bound phospholipase D from human placenta,” Cellular Signalling, vol. 9, no. 2, pp. 189–196, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Timpl and J. C. Brown, “Supramolecular assembly of basement membranes,” BioEssays, vol. 18, no. 2, pp. 123–132, 1996. View at Google Scholar · View at Scopus
  26. F. K. Wiseman, “Down syndrome—recent progress and future prospects,” Human Molecular Genetics, vol. 18, no. R1, pp. R75–R83, 2009. View at Google Scholar
  27. M.-R. Du, W.-H. Zhou, F.-T. Yan et al., “Cyclosporine A induces titin expression via MAPK/ERK signalling and improves proliferative and invasive potential of human trophoblast cells,” Human Reproduction, vol. 22, no. 9, pp. 2528–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Lange, “Selected reaction monitoring for quantitative proteomics: a tutorial,” Molecular Systems Biology, vol. 4, p. 222, 2008. View at Google Scholar