Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 194720, 7 pages
http://dx.doi.org/10.1155/2011/194720
Review Article

Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke

1Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
2Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
3Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
4Cryo-Cell International, Inc., Tampa, FL 34677, USA
5Saneron-CCEL Therapeutics, Inc. 33612, USA
6Cryopraxis, Cell Praxis, BioRio, Póde Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil

Received 15 July 2011; Accepted 12 September 2011

Academic Editor: Ken-ichi Isobe

Copyright © 2011 Maria Carolina O. Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient.