Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 250860, 10 pages
http://dx.doi.org/10.1155/2011/250860
Review Article

Immunotherapy for Lung Cancers

1Department of Biotechnology, and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan
2Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
3Department of Education and Research, Taipei City Hospital, Taipei 11221, Taiwan
4Division of Pediatric, Taipei City Hospital, Yang-Ming Branch, Taipei 11146, Taiwan

Received 17 September 2010; Revised 15 November 2010; Accepted 23 December 2010

Academic Editor: James L. Gulley

Copyright © 2011 Ming-Yi Ho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” Ca-A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. F. Mountain, “Staging classification of lung cancer: a critical evaluation,” Clinics in Chest Medicine, vol. 23, no. 1, pp. 103–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Cersosimo, “Lung cancer: a review,” American Journal of Health-System Pharmacy, vol. 59, no. 7, pp. 611–642, 2002. View at Google Scholar · View at Scopus
  4. D. Pardoll and J. Allison, “Cancer immunotherapy: breaking the barriers to harvest the crop,” Nature Medicine, vol. 10, no. 9, pp. 887–892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Gross and P. Walden, “Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer,” Immunology Letters, vol. 116, no. 1, pp. 7–14, 2008. View at Publisher · View at Google Scholar
  6. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The immunobiology of cancer immunosurveillance and immunoediting,” Immunity, vol. 21, no. 2, pp. 137–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Diefenbach and D. H. Raulet, “The innate immune response to tumors and its role in the induction of T-cell immunity,” Immunological Reviews, vol. 188, pp. 9–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Nouri-Shirazi, J. Banchereau, J. Fay, and K. Palucka, “Dendritic cell based tumor vaccines,” Immunology Letters, vol. 74, no. 1, pp. 5–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Lord and J. G. Frelinger, “Tumor immunotherapy: cytokines and antigen presentation,” Cancer Immunology Immunotherapy, vol. 46, no. 2, pp. 75–81, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. M. R. Shurin, L. Lu, P. Kalinski, A. M. Stewart-Akers, and M. T. Lotze, “Th1/Th2 balance in cancer, transplantation and pregnancy,” Springer Seminars in Immunopathology, vol. 21, no. 3, pp. 339–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Nishimura, K. Iwakabe, M. Sekimoto et al., “Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo,” Journal of Experimental Medicine, vol. 190, no. 5, pp. 617–627, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Shurin, L. Lu, P. Kalinski, A. M. Stewart-Akers, and M. T. Lotze, “Th1/Th2 balance in cancer, transplantation and pregnancy,” Springer Seminars in Immunopathology, vol. 21, no. 3, pp. 339–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wei, R. Sun, W. Xiao et al., “Type two cytokines predominance of human lung cancer and its reverse by traditional Chinese medicine TTMP,” Cellular & Molecular Immunology, vol. 1, no. 1, pp. 63–70, 2004. View at Google Scholar · View at Scopus
  14. A. Yoshimura, “Signal transduction of inflammatory cytokines and tumor development,” Cancer Science, vol. 97, no. 6, pp. 439–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. V. Titu, J. R. Monson, and J. Greenman, “The role of CD8+ T cells in immune responses to colorectal cancer,” Cancer Immunology, Immunotherapy, vol. 51, no. 5, pp. 235–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. M. Carlos, “Leukocyte recruitment at sites of tumor: dissonant orchestration,” Journal of Leukocyte Biology, vol. 70, no. 2, pp. 171–184, 2001. View at Google Scholar · View at Scopus
  17. J. J. Subleski, R. H. Wiltrout, and J. M. Weiss, “Application of tissue-specific NK and NKT cell activity for tumor immunotherapy,” Journal of Autoimmunity, vol. 33, no. 3-4, pp. 275–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Cerwenka and L. L. Lanier, “Natural killer cells, viruses and cancer,” Nature Reviews Immunology, vol. 1, no. 1, pp. 41–49, 2001. View at Google Scholar · View at Scopus
  19. Y. Hayakawa, J. M. Kelly, J. A. Westwood et al., “Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin,” Journal of Immunology, vol. 169, no. 10, pp. 5377–5381, 2002. View at Google Scholar · View at Scopus
  20. T. A. Fehniger, S. F. Cai, X. Cao et al., “Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs,” Immunity, vol. 26, no. 6, pp. 798–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Martín-Fontecha, L. L. Thomsen, S. Brett et al., “Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming,” Nature Immunology, vol. 5, no. 12, pp. 1260–1265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. P. B. Savage, L. Teyton, and A. Bendelac, “Glycolipids for natural killer T cells,” Chemical Society Reviews, vol. 35, no. 9, pp. 771–779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Nakagawa, I. Nagafune, Y. Tazunoki et al., “Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice,” Journal of Immunology, vol. 166, no. 11, pp. 6578–6584, 2001. View at Google Scholar · View at Scopus
  24. M. Nieda, A. Nicol, Y. Koezuka et al., “TRAIL expression by activated human CD4+Vα24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells,” Blood, vol. 97, no. 7, pp. 2067–2074, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ribas, L. H. Butterfield, J. A. Glaspy, and J. S. Economou, “Current developments in cancer vaccines and cellular immunotherapy,” Journal of Clinical Oncology, vol. 21, no. 12, pp. 2415–2432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Dredge, B. J. Marriott, S. M. Todryk, and A. G. Dalgleish, “Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy,” Cancer Immunology, Immunotherapy, vol. 51, no. 10, pp. 521–531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Hirschowitz, D. M. Hiestand, and J. R. Yannelli, “Vaccines for lung cancer,” Journal of Thoracic Oncology, vol. 1, no. 1, pp. 93–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bhattacharya-Chatterjee, S. K. Chatterjee, and K. A. Foon, “The anti-idiotype vaccines for immunotherapy,” Current Opinion in Molecular Therapeutics, vol. 3, no. 1, pp. 63–69, 2001. View at Google Scholar · View at Scopus
  29. L. Ding, E. N. Lalani, M. Reddish et al., “Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene,” Cancer Immunology Immunotherapy, vol. 36, no. 1, pp. 9–17, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Butts, N. Murray, A. Maksymiuk et al., “Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 23, no. 27, pp. 6674–6681, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Sato, Y. Noguchi, H. Wada et al., “Quantitative real-time RT-PCR analysis of NY-ESO-1 and LAGE-1a mRNA expression in normal tissues and tumors, and correlation of the protein expression with the mRNA copy number,” International Journal of Oncology, vol. 26, no. 1, pp. 57–63, 2005. View at Google Scholar · View at Scopus
  32. A. A. Jungbluth, W. A. Silva Jr., K. Iversen et al., “Expression of cancer-testis (CT) antigens in placenta,” Cancer Immunity, vol. 7, p. 15, 2007. View at Google Scholar · View at Scopus
  33. P. van der Bruggen, C. Traversari, P. Chomez et al., “A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma,” Science, vol. 254, no. 5038, pp. 1643–1647, 1991. View at Google Scholar · View at Scopus
  34. N. Peled, A. B. Oton, F. R. Hirsch, and P. Bunn, “MAGE A3 antigen-specific cancer immunotherapeutic,” Immunotherapy, vol. 1, no. 1, pp. 19–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Mizukami, K. Kono, Y. Daigo et al., “Detection of novel cancer-testis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma,” Cancer Science, vol. 99, no. 7, pp. 1448–1454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Kono, Y. Mizukami, Y. Daigo et al., “Vaccination with multiple peptides derived from novel cancer-testis antigens can induce specific T-cell responses and clinical responses in advanced esophageal cancer,” Cancer Science, vol. 100, no. 8, pp. 1502–1509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Gonzalez, T. Crombet, F. Torres et al., “Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy,” Annals of Oncology, vol. 14, no. 3, pp. 461–466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Garcia Verdecia, E. Neninger, A. De La Torre et al., “Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine,” Clinical Cancer Research, vol. 14, no. 3, pp. 840–846, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. E. N. Vinageras, A. e La Torre, M. O. Rodríguez et al., “Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 9, pp. 1452–1458, 2008. View at Publisher · View at Google Scholar
  40. G. Giaccone, C. Debruyne, E. Felip et al., “Phase III study of adjuvant vaccination with Bec2/bacille calmette-guerin in responding patients with limited-disease small-cell lung cancer (European organisation for research and treatment of cancer 08971-08971B; silva study),” Journal of Clinical Oncology, vol. 23, no. 28, pp. 6854–6864, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Schmitt, T. F. E. Barth, E. Beyer et al., “The tumor antigens RHAMM and G250/CAIX are expressed in head and neck squamous cell carcinomas and elicit specific CD8+ T cell responses,” International Journal of Oncology, vol. 34, no. 3, pp. 629–639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. X. M. Chen, X. Q. Xu, K. Sun, W. H. D. Hallett, J. D. Zhao, and D. L. Zhang, “NKG2D ligands expression and NKG2D-mediated cytotoxicity in human laryngeal squamous carcinoma cells,” Scandinavian Journal of Immunology, vol. 67, no. 5, pp. 441–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. J. Liu, M. T. Lui, H. L. Chen, S. C. Lin, and K. W. Chang, “MICA and MICB overexpression in oral squamous cell carcinoma,” Journal of Oral Pathology & Medicine, vol. 36, no. 1, pp. 43–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Pashine, N. M. Valiante, and J. B. Ulmer, “Targeting the innate immune response with improved vaccine adjuvants,” Nature Medicine, vol. 11, no. 4, supplement, pp. S63–S68, 2005. View at Publisher · View at Google Scholar
  45. L. D. Cranmer, K. T. Trevor, and E. M. Hersh, “Clinical applications of dendritic cell vaccination in the treatment of cancer,” Cancer Immunology, Immunotherapy, vol. 53, no. 4, pp. 275–306, 2004. View at Publisher · View at Google Scholar
  46. A. M. Krieg, “Toll-like receptor 9 (TLR9) agonists in the treatment of cancer,” Oncogene, vol. 27, no. 2, pp. 161–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Corti, M. Giovannini, C. Belli, and E. Villa, “Immunomodulatory agents with antivascular activity in the treatment of non-small cell lung cancer: focus on TLR9 agonists, IMiDs and NGR-TNF,” Journal of Oncology, vol. 2010, Article ID 732680, 2010. View at Publisher · View at Google Scholar
  48. M. J. Smyth, E. Cretney, M. H. Kershaw, and Y. Hayakawa, “Cytokines in cancer immunity and immunotherapy,” Immunological Reviews, vol. 202, pp. 275–293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clinical Medicine and Research, vol. 4, no. 3, pp. 218–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Salgia, T. Lynch, A. Skarin et al., “Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma,” Journal of Clinical Oncology, vol. 21, no. 4, pp. 624–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Nemunaitis, D. Sterman, D. Jablons et al., “Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer,” Journal of the National Cancer Institute, vol. 96, no. 4, pp. 326–331, 2004. View at Google Scholar · View at Scopus
  52. M. Y. Ho, G. H. Sun, S. J. J. Leu, S. M. Ka, S. J. Tang, and K. H. Sun, “Combination of FasL and GM-CSF confers synergistic antitumor immunity in an in vivo model of the murine Lewis lung carcinoma,” International Journal of Cancer, vol. 123, no. 1, pp. 123–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. B. Sandler and S. M. Dubinett, “COX-2 inhibition and lung cancer,” Seminars in Oncology, vol. 31, no. 7, supplement, pp. 45–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. B. Bartlett, K. Dredge, and A. G. Dalgleish, “The evolution of thalidomide and its IMiD derivatives as anticancer agents,” Nature Reviews Cancer, vol. 4, no. 4, pp. 314–322, 2004. View at Google Scholar · View at Scopus
  55. L. A. Emens and E. M. Jaffee, “Leveraging the activity of tumor vaccines with cytotoxic chemotherapy,” Cancer Research, vol. 65, no. 18, pp. 8059–8064, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. A. K. Nowak, R. A. Lake, and B. W. S. Robinson, “Combined chemoimmunotherapy of solid tumours: improving vaccines?” Advanced Drug Delivery Reviews, vol. 58, no. 8, pp. 975–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. J. G. Sinkovics and J. C. Horvath, “Evidence accumulating in support of cancer vaccines combined with chemotherapy: a pragmatic review of past and present efforts,” International Journal of Oncology, vol. 29, no. 4, pp. 765–777, 2006. View at Google Scholar · View at Scopus
  58. J. L. Gulley, R. A. Madan, and P. M. Arlen, “Enhancing efficacy of therapeutic vaccinations by combination with other modalities,” Vaccine, vol. 25, no. 2, pp. B89–B96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, “Immunological aspects of cancer chemotherapy,” Nature Reviews Immunology, vol. 8, no. 1, pp. 59–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Beyer, M. Kochanek, K. Darabi et al., “Reduced frequencies and suppressive function of CD4+CD25 hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine,” Blood, vol. 106, no. 6, pp. 2018–2025, 2005. View at Publisher · View at Google Scholar
  61. K. Subbaramaiah and A. J. Dannenberg, “Cyclooxygenase 2: a molecular target for cancer prevention and treatment,” Trends in Pharmacological Sciences, vol. 24, no. 2, pp. 96–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. J. Tang, M. Y. Ho, H. C. Cho et al., “Phosphoglycerate kinase 1-overexpressing lung cancer cells reduce cyclooxygenase 2 expression and promote anti-tumor immunity in vivo,” International Journal of Cancer, vol. 123, no. 12, pp. 2840–2848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Ho, S. Tang, W. V. Ng et al., “Nucleotide-binding domain of phosphoglycerate kinase 1 reduces tumor growth by suppressing COX-2 expression,” Cancer Science, vol. 101, no. 11, pp. 2411–2416, 2010. View at Publisher · View at Google Scholar
  64. M. Y. Ho, S. J. J. Leu, G. H. Sun, M. H. Tao, S. J. Tang, and K. H. Sun, “IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities,” Journal of Immunology, vol. 183, no. 10, pp. 6217–6226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Yasumoto, T. Hanagiri, and M. Takenoyama, “Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer,” General Thoracic and Cardiovascular Surgery, vol. 57, no. 9, pp. 449–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. T. So, M. Takenoyama, M. Mizukami et al., “Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer,” Cancer Research, vol. 65, no. 13, pp. 5945–5952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Baba, T. Hanagiri, Y. Ichiki et al., “Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B,” Cancer Science, vol. 98, no. 11, pp. 1795–1802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Ramnath, D. Tan, Q. Li et al., “Is downregulation of MHC class I antigen expression in human non-small cell lung cancer associated with prolonged survival?” Cancer Immunology, Immunotherapy, vol. 55, no. 8, pp. 891–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Kikuchi, K. Yamazaki, T. Torigoe et al., “HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer,” Cancer Science, vol. 98, no. 9, pp. 1424–1430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Sigalotti, S. Coral, E. Fratta et al., “Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy,” Seminars in Oncology, vol. 32, no. 5, pp. 473–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Fukuyama, Y. Ichiki, S. Yamada et al., “Cytokine production of lung cancer cell lines: correlation between their production and the inflammatory/immunological responses both in vivo and in vitro,” Cancer Science, vol. 98, no. 7, pp. 1048–1054, 2007. View at Publisher · View at Google Scholar
  72. V. Karanikas, M. Zamanakou, T. Kerenidi et al., “Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer,” Cancer Biology & Therapy, vol. 6, no. 8, pp. 1258–1262, 2007. View at Google Scholar · View at Scopus
  73. P. C. Rodriguez, D. G. Quiceno, J. Zabaleta et al., “Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses,” Cancer Research, vol. 64, no. 16, pp. 5839–5849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Groh, J. Wu, C. Yee, and T. Spies, “Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation,” Nature, vol. 419, no. 6908, pp. 734–738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. X. Zang and J. P. Allison, “The B7 family and cancer therapy: costimulation and coinhibition,” Clinical Cancer Research, vol. 13, no. 18, pp. 5271–5279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Konishi, K. Yamazaki, M. Azuma, I. Kinoshita, H. Dosaka-Akita, and M. Nishimura, “B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression,” Clinical Cancer Research, vol. 10, no. 15, pp. 5094–5100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Viard-Leveugle, S. Veyrenc, L. E. French, C. Brambilla, and E. Brambilla, “Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma,” Journal of Pathology, vol. 201, no. 2, pp. 268–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. I. P. Witz, “Yin-Yang activities and vicious cycles in the tumor microenvironment,” Cancer Research, vol. 68, no. 1, pp. 9–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. G. Lechner, D. J. Liebertz, and A. L. Epstein, “Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells,” Journal of Immunology, vol. 185, no. 4, pp. 2273–2284, 2010. View at Publisher · View at Google Scholar
  80. A. Ben-Baruch, “Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 38–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Serafini, I. Borrello, and V. Bronte, “Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 53–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Kusmartsev and D. I. Gabrilovich, “Role of immature myeloid cells in mechanisms of immune evasion in cancer,” Cancer Immunology, Immunotherapy, vol. 55, no. 3, pp. 237–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Nagaraj, K. Gupta, V. Pisarev et al., “Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer,” Nature Medicine, vol. 13, no. 7, pp. 828–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Maile, C. A. Siler, S. E. Kerry, K. E. Midkiff, E. J. Collins, and J. A. Frelinger, “Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo,” Journal of Immunology, vol. 174, no. 2, pp. 619–627, 2005. View at Google Scholar · View at Scopus
  85. S. Kusmartsev, S. Nagaraj, and D. I. Gabrilovich, “Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells,” Journal of Immunology, vol. 175, no. 7, pp. 4583–4592, 2005. View at Google Scholar · View at Scopus
  86. V. Bronte and P. Zanovello, “Regulation of immune responses by L-arginine metabolism,” Nature Reviews Immunology, vol. 5, no. 8, pp. 641–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. S. H. Chiou, B. C. Sheu, W. C. Chang, S. C. Huang, and H. Hong-Nerng, “Current concepts of tumor-infiltrating lymphocytes in human malignancies,” Journal of Reproductive Immunology, vol. 67, no. 1-2, pp. 35–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Allavena, A. Sica, G. Solinas, C. Porta, and A. Mantovani, “The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages,” Critical Reviews in Oncology/Hematology, vol. 66, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. C. E. Lewis and J. W. Pollard, “Distinct role of macrophages in different tumor microenvironments,” Cancer Research, vol. 66, no. 2, pp. 605–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Ma, L. Liu, G. Che, N. Yu, F. Dai, and Z. You, “The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time,” BMC Cancer, vol. 10, article no. 112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. S. K. Biswas, A. Sica, and C. E. Lewis, “Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms,” Journal of Immunology, vol. 180, no. 4, pp. 2011–2017, 2008. View at Google Scholar · View at Scopus
  93. G. Solinas, G. Germano, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1065–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Y. Woo, C. S. Chu, T. J. Goletz et al., “Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer,” Cancer Research, vol. 61, no. 12, pp. 4766–4772, 2001. View at Google Scholar · View at Scopus
  95. T. Ishida, T. Ishii, A. Inagaki et al., “Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege,” Cancer Research, vol. 66, no. 11, pp. 5716–5722, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Y. Woo, H. Yeh, C. S. Chu et al., “Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation,” Journal of Immunology, vol. 168, no. 9, pp. 4272–4276, 2002. View at Google Scholar · View at Scopus
  97. N. Larmonier, M. Marron, Y. Zeng et al., “Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10,” Cancer Immunology, Immunotherapy, vol. 56, no. 1, pp. 48–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Sato, S. H. Olson, J. Ahn et al., “Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18538–18543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Nishikawa and S. Sakaguchi, “Regulatory T cells in tumor immunity,” International Journal of Cancer, vol. 127, no. 4, pp. 759–767, 2010. View at Publisher · View at Google Scholar
  100. H. Tanaka, J. Tanaka, J. Ø. Kjaergaard Jo., and S. Shu, “Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes,” Journal of Immunotherapy, vol. 25, no. 3, pp. 207–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar