Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 282356, 9 pages
http://dx.doi.org/10.1155/2011/282356
Research Article

Identification of NF-κB Modulation Capabilities within Human Intestinal Commensal Bacteria

1INRA, UMR1319, 78350 Jouy-en-Josas, France
2AgroParisTech, UMR Micalis, 78350 Jouy-en-Josas, France
3LibraGen S.A., 31400 Toulouse, France

Received 30 December 2010; Accepted 27 March 2011

Academic Editor: Eric C. Martens

Copyright © 2011 Omar Lakhdari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Artis, “Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut,” Nature Reviews Immunology, vol. 8, no. 6, pp. 411–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Neish, A. T. Gewirtz, H. Zeng et al., “Prokaryotic regulation of epithelial responses by inhibition of I?B-a ubiquitination,” Science, vol. 289, no. 5484, pp. 1560–1563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Rakoff-Nahoum, J. Paglino, F. Eslami-Varzaneh, S. Edberg, and R. Medzhitov, “Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis,” Cell, vol. 118, no. 2, pp. 229–241, 2004. View at Google Scholar
  5. D. Kelly, J. I. Campbell, T. P. King et al., “Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-? and ReIA,” Nature Immunology, vol. 5, no. 1, pp. 104–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Menard, C. Candalh , J. C. Bambou et al., “Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport,” Gut, vol. 53, pp. 821–828, 2004. View at Google Scholar
  7. E. Heuvelin, C. Lebreton, C. Grangette, B. Pot, N. Cerf-Bensussan, and M. Heyman, “Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors,” Plos One, vol. 4, no. 4, Article ID e5184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Kaci, O. Lakhdari, J. Doré et al., “The commensal Streptococcus salivarius inhibits NF-?B pathway in human intestinal epithelial cells,” In press.
  9. E. O. Petrof, K. Kojima, M. J. Ropeleski et al., “Probiotics inhibit nuclear factor-?B and induce heat shock proteins in colonic epithelial cells through proteasome inhibition,” Gastroenterology, vol. 127, no. 5, pp. 1474–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Sokol, B. Pigneur, L. Watterlot et al., “Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16731–16736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pasparakis, “Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases,” Nature Reviews Immunology, vol. 9, no. 11, pp. 778–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Nenci, C. Becker, A. Wullaert et al., “Epithelial NEMO links innate immunity to chronic intestinal inflammation,” Nature, vol. 446, no. 7135, pp. 557–561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Zaph, A. E. Troy, B. C. Taylor et al., “Epithelial-cell-intrinsic IKK-ß expression regulates intestinal immune homeostasis,” Nature, vol. 446, no. 7135, pp. 552–556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Eckmann, T. Nebelsiek, A. A. Fingerle et al., “Opposing functions of IKKß during acute and chronic intestinal inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15058–15063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. A. Steinbrecher, E. Harmel-Laws, R. Sitcheran, and A. S. Baldwin, “Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation,” Journal of Immunology, vol. 180, no. 4, pp. 2588–2599, 2008. View at Google Scholar · View at Scopus
  16. S. Schreiber, S. Nikolaus, and J. Hampe, “Activation of nuclear factor κB inflammatory bowel disease,” Gut, vol. 42, no. 4, pp. 477–484, 1998. View at Google Scholar · View at Scopus
  17. R. E. Hungate , “The anaerobic mesophilic cellulolytic bacteria,” Bacteriological reviews, vol. 14, no. 1, pp. 1–49, 1950. View at Google Scholar · View at Scopus
  18. O. Lakhdari, A. Cultrone, J. Tap et al., “Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-?B modulation in the human gut,” PLoS One, vol. 5, no. 9, Article ID e13092, 2010. View at Publisher · View at Google Scholar
  19. K. A. Zarember and P. J. Godowski, “Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines,” Journal of Immunology, vol. 168, no. 2, pp. 554–561, 2002. View at Google Scholar · View at Scopus
  20. K. A. Remer, M. Brcic, K. S. Sauter, and T. W. Jungi, “Human monocytoid cells as a model to study Toll-like receptor-mediated activation,” Journal of Immunological Methods, vol. 313, no. 1-2, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Hayashi, K. D. Smith, A. Ozinsky et al., “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,” Nature, vol. 410, no. 6832, pp. 1099–1103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. T. S. Steiner, J. P. Nataro, C. E. Poteet-Smith, J. A. Smith, and R. L. Guerrant, “Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells,” Journal of Clinical Investigation, vol. 105, no. 12, pp. 1769–1777, 2000. View at Google Scholar · View at Scopus
  23. K. I. Ogushi, A. Wada, T. Niidome et al., “Salmonella enteritidis FliC (flagella filament protein) induces human ß-defensin-2 mRNA production by Caco-2 cells,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30521–30526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Melmed, L. S. Thomas, N. Lee et al., “Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut,” Journal of Immunology, vol. 170, no. 3, pp. 1406–1415, 2003. View at Google Scholar · View at Scopus
  25. J. M. Otte, E. Cario, and D. K. Podolsky, “Mechanisms of cross Hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells,” Gastroenterology, vol. 126, no. 4, pp. 1054–1070, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Furrie, S. Macfarlane, G. Thomson, and G. T. Macfarlane, “Toll-like receptors-2,–3 and–4 expression patterns on human colon and their regulation by mucosal-associated bacteria,” Immunology, vol. 115, no. 4, pp. 565–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. L. W. Duck, M. R. Walter, J. Novak et al., “Isolation of flagellated bacteria implicated in Crohn's disease,” Inflammatory Bowel Diseases, vol. 13, no. 10, pp. 1191–1201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Haya, Y. Tokumaru, N. Abe, J. Kaneko, and S. I. Aizawa, “Characterization of lateral flagella in Selenomonas ruminantium,” Applied and Environmental Microbiology, vol. 77, no. 8, pp. 2799–2802, 2011. View at Google Scholar
  29. S. H. Duncan, G. L. Hold, A. Barcenilla, C. S. Stewart, and H. J. Flint, “Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1615–1620, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. H. Duncan, G. L. Hold, H. J. Harmsen, C. S. Stewart, and H. J. Flint, “Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 6, pp. 2141–2146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. H. Eggerth and B. H. Gagnon, “The bacteroides of human feces,” Journal of Bacteriology, vol. 25, no. 4, pp. 389–413, 1933. View at Google Scholar
  32. X. Wang, T. Maegawa, T. Karasawa, E. Ozaki, and S. Nakamura, “Clostridium sardiniense Prévot 1938 and Clostridium absonum Nakamura et al. 1973 are heterotypic synonyms: evidence from phylogenetic analyses of phospholipase C and 16S rRNA sequences, and DNA relatedness,” International Journal of Systematic and Evolutionary Microbiology, vol. 55, no. 3, pp. 1193–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. I. P. Bai, Q. Ouyang, W. Zhang, C. H. Wang, and S. F. Li, “Probiotics inhibit TNF-α-induced interleukin-8 secretion of HT29 cells,” World Journal of Gastroenterology, vol. 10, no. 3, pp. 455–457, 2004. View at Google Scholar · View at Scopus
  34. M. Candela, F. Perna, P. Carnevali et al., “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” International Journal of Food Microbiology, vol. 125, no. 3, pp. 286–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Uehara, Y. Fujimoto, K. Fukase, and H. Takada, “Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines,” Molecular Immunology, vol. 44, no. 12, pp. 3100–3111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Schlee , J. Harder, B. Koten, E. F. Stange, J. Wehkamp, and K. Fellermann, “Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2,” Clinical and Experimental Immunology, vol. 151, no. 3, pp. 528–535, 2008. View at Google Scholar
  37. M. S. Inan, R. J. Rasoulpour, L. Yin, A. K. Hubbard, D. W. Rosenberg, and C. Giardina, “The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line,” Gastroenterology, vol. 118, no. 4, pp. 724–734, 2000. View at Google Scholar · View at Scopus
  38. L. Yin, G. Laevsky, and C. Giardina, “Butyrate suppression of colonocyte NF-κB activation and cellular proteasome activity,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 44641–44646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kumar, H. Wu, L. S. Collier-Hyams, Y. M. Kwon, J. M. Hanson, and A. S. Neish, “The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation,” Journal of Immunology, vol. 182, no. 1, pp. 538–546, 2009. View at Google Scholar · View at Scopus
  40. E. Adam, V. Quivy, F. Bex et al., “Potentiation of tumor necrosis factor-induced NF-κB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IκBα,” Molecular and Cellular Biology, vol. 23, no. 17, pp. 6200–6209, 2003. View at Publisher · View at Google Scholar
  41. M. Blais, E. G. Seidman, and C. Asselin, “Dual effect of butyrate on IL-1β-mediated intestinal epithelial cell inflammatory response,” DNA and Cell Biology, vol. 26, no. 3, pp. 133–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Schwab, V. Reynders, S. Loitsch, D. Steinhilber, O. Schröder, and J. Stein, “The dietary histone deacetylase inhibitor sulforaphane induces human β-defensin-2 in intestinal epithelial cells,” Immunology, vol. 125, no. 2, pp. 241–251, 2008. View at Publisher · View at Google Scholar · View at Scopus