Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 320987, 10 pages
http://dx.doi.org/10.1155/2011/320987
Research Article

Possible Linkage of SP6 Transcriptional Activity with Amelogenesis by Protein Stabilization

Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan

Received 8 June 2011; Accepted 9 August 2011

Academic Editor: Decheng Yang

Copyright © 2011 Trianna W. Utami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Suske, E. Bruford, and S. Philipsen, “Mammalian SP/KLF transcription factors: bring in the family,” Genomics, vol. 85, no. 5, pp. 551–556, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. Scohy, P. Gabant, T. van Reeth et al., “Identification of KLF13 and KLF14 (Sp6), novel members of the Sp6/XKLF transcription factor family,” Genomics, vol. 70, pp. 93–101, 2000. View at Google Scholar
  3. T. Nakamura, F. Unda, S. de-Vega et al., “The Kruppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 626–634, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. I. Ruspita, K. Miyoshi, T. Muto, K. Abe, T. Horiguchi, and T. Noma, “Sp6 down regulation of follistatin gene expression in ameloblast,” Journal of Medical Investigation, vol. 55, no. 1-2, pp. 87–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Hertveldt, C. De Mees, S. Scohy, P. Van Vooren, J. Szpirer, and C. Szpirer, “The Sp6 locus uses several promoters and generate sense and antisense transcripts,” Biochimie, vol. 89, no. 11, pp. 1381–1387, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. A. Wahyudi, T. Horiguchi, K. Miyoshi et al., “Isolation and characterization of mouse specificity 6 promoter,” The Indonesian Journal of Dental Research, vol. 1, pp. 21–34, 2010. View at Google Scholar
  7. T. Nakamura, S. De Vega, S. Fukumoto, L. Jimenez, F. Unda, and Y. Yamada, “Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number,” Journal of Biological Chemistry, vol. 283, no. 8, pp. 4825–4833, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. V. Hertveldt, S. Louryan, T. Van Reeth et al., “The development of several organs and appendages is impaired in mice lacking Sp6,” Developmental Dynamics, vol. 237, no. 4, pp. 883–892, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Abe, K. Miyoshi, T. Muto et al., “Establishment and characterization of rat dental epithelial derived ameloblast-lineage clones,” Journal of Bioscience and Bioengineering, vol. 103, no. 5, pp. 479–485, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. Azzu, S. A. Mookerjee, and M. D. Brand, “Rapid turnover of mitochondrial uncoupling protein 3,” Biochemical Journal, vol. 426, no. 1, pp. 13–17, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. H. Lee, “Proteasome inhibitors: valuable new tools for cell biologists,” Trends in Cell Biology, vol. 8, no. 10, pp. 397–403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Schulze, T. Kolter, and K. Sandhoff, “Principles of lysosomal membrane degradation cellular topology and biochemistry of lysosomal lipid generation,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 674–683, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Moffatt, C. E. Smith, R. St.-Arnaud R., D. Simmons, J. T. Wright, and A. Nanci, “Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium,” Biochemical Journal, vol. 399, no. 1, pp. 37–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. K. Otsu, R. Kishigami, N. Fujiwara, K. Ishizeki, and H. Harada, “Functional role of Rho-kinase in ameloblast differentiation,” Journal of Cellular Physiology, vol. 226, no. 10, pp. 2527–2534, 2011. View at Publisher · View at Google Scholar
  15. R. S. Lacruz, M. Hilvo, I. Kurtz, and M. L. Paine, “A survey of carbonic anhydrase mRNA expression in enamel cells,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 883–887, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. Balczon, C. Simerly, D. Takahashi, and G. Schatten, “Arrest of cell cycle progression during first interphase in murine zygotes microinjected with anti-PCM-1 antibodies,” Cell Motility and the Cytoskeleton, vol. 52, no. 3, pp. 183–192, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. Z. Zhang, Y. Lan, Y. Chai, and R. Jiang, “Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row,” Science, vol. 323, no. 5918, pp. 1232–1234, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Talamillo, I. Delgado, T. Nakamura et al., “Role of epiprofin, a zinc-finger transcription factor, in limb development,” Developmental Biology, vol. 337, no. 2, pp. 363–374, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. L. Jimenez-Rojo, G. Ibarretxe, M. Aurrekoetxea et al., “Epiprofin/Sp6: a new player in the regulation of tooth development,” Histology and Histopathology, vol. 25, pp. 1621–1630, 2010. View at Google Scholar
  20. P. Ferrara, E. Andermarcher, G. Bossis et al., “The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression,” Oncogene, vol. 22, no. 10, pp. 1461–1474, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. V. Sorokin, E. R. Kim, and L. P. Ovchinnikov, “Proteasome system of protein degradation and processing,” Biochemistry (Moscow), vol. 74, no. 13, pp. 1411–1442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Geoffroy and R. T. Hay, “An additional role for SUMO in ubiquitin-mediated proteolysis,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 564–568, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. Ren, B. J. Mayer, P. Cicchetti, and D. Baltimore, “Identification of a ten-amino acid proline-rich SH3 binding site,” Science, vol. 259, no. 5098, pp. 1157–1161, 1993. View at Google Scholar · View at Scopus
  24. K. Iwasaki, E. Bajenova, E. Somogyi-Ganss et al., “Amelotin—a novel secreted, ameloblast-specific protein,” Journal of Dental Research, vol. 84, no. 12, pp. 1127–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Moffatt, C. E. Smith, R. Sooknanan, R. St-Arnaud, and A. Nanci, “Identification of secreted and membrane proteins in the rat incisor enamel organ using a signal-trap screening approach,” European Journal of Oral Sciences, vol. 114, no. 1, pp. 139–146, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. R. J. Rauth, K. S. Potter, A. Y. Ngan et al., “Dental enamel: genes define biomechanics,” Journal of the California Dental Association, vol. 37, no. 12, pp. 863–868, 2009. View at Google Scholar · View at Scopus
  27. M. T. Biz, M. R. Marques, V. O. Crema, A. S. Moriscot, and M. F. Dos Santos, “GTPases RhoA and Rac1 are important for amelogenin and DSPP expression during differentiation of ameloblast and odontoblas,” Cell and Tissue Research, vol. 340, no. 3, pp. 459–470, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus