Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 459510, 8 pages
http://dx.doi.org/10.1155/2011/459510
Review Article

Mesenchymal Stem Cells: Angels or Demons?

Division of Human Biology, School of Medical and Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia

Received 8 March 2011; Revised 1 June 2011; Accepted 1 June 2011

Academic Editor: George E. Plopper

Copyright © 2011 Rebecca S. Y. Wong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Google Scholar · View at Scopus
  2. S. P. Bruder, N. Jaiswal, and S. E. Haynesworth, “Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation,” Journal of Cellular Biochemistry, vol. 64, no. 2, pp. 278–294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. S. E. Haynesworth, J. Goshima, V. M. Goldberg, and A. I. Caplan, “Characterization of cells with osteogenic potential from human marrow,” Bone, vol. 13, no. 1, pp. 81–88, 1992. View at Google Scholar · View at Scopus
  4. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. G. C. Kopen, D. J. Prockop, and D. G. Phinney, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10711–10716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Sun, L. Chen, X. G. Hou et al., “Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro,” Chinese Medical Journal, vol. 120, no. 9, pp. 771–776, 2007. View at Google Scholar · View at Scopus
  7. S. Ju, G. J. Teng, H. Lu et al., “In vivo differentiation of magnetically labeled mesenchymal stem cells into hepatocytes for cell therapy to repair damaged liver,” Investigative Radiology, vol. 45, no. 10, pp. 625–633, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. E. D. Gupta, N. Nayyer, S. P. Chin, C. Y. Cheok, and S. K. Cheong, “Clinical safety and efficacy of autologous bone marrow mesenchymal stem cell injection for the treatment of severe osteoarthritis,” International Journal of Rheumatic Disease, vol. 13, supplement 1, pp. 40–43, 2010. View at Google Scholar
  9. S. P. Chin, A. Poey, C. Y. Wong et al., “Cryopreserved mesenchymal stromal cell treatment is safe and feasible for severe dilated ischemic cardiomyopathy,” Cytotherapy, vol. 12, no. 1, pp. 31–37, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. O. Y. Bang, J. S. Lee, P. H. Lee, and G. Lee, “Autologous mesenchymal stem cell transplantation in stroke patients,” Annals of Neurology, vol. 58, no. 4, pp. 653–654, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. Karussis, I. Kassis, B. G. S. Kurkalli, and S. Slavin, “Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases,” Journal of the Neurological Sciences, vol. 265, no. 1-2, pp. 131–135, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. Ramasamy, E. W. F. EWF, I. Sooiro, V. Tisato, D. Bonnet, and F. Dazzi, “Mesenchymal stem cells inhibit proliferation and apoptosis of tumour cells: impact on in vivo tumour growth,” Leukaemia, vol. 21, no. 2, pp. 304–310, 2007. View at Google Scholar
  13. X. F. Wang, Z. Q. Zhang, and C. Yao, “Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells,” Leukemia Research, vol. 34, no. 10, pp. 1325–1329, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. A. Patel, J. R. Meyer, S. J. Greco, K. E. Corcoran, R. Bryan, and P. Rameshwar, “Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β,” Journal of Immunology, vol. 184, no. 10, pp. 5885–5894, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Rubio, J. Garcia-Castro, M. C. Martín et al., “Spontaneous human adult stem cell transformation,” Cancer Research, vol. 65, no. 8, pp. 3035–3039, 2005. View at Google Scholar · View at Scopus
  16. B. V. Afanasyev, E. E. Elstner, and A. R. Zander, “A. J. friedenstein, founder of the mesenchymal stem cell concept,” Cellular Therapy and Transplantation, vol. 1, no. 3, pp. 35–38, 2009. View at Google Scholar · View at Scopus
  17. A. J. Freidenstein, U. F. Deriglasova, N. N. Kulagina et al., “Precursors for fibroblasts in different populations of haematopoietic cells as detected by the in vitro colony assay method,” Experimental Haematology, vol. 2, pp. 83–92, 1974. View at Google Scholar
  18. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Google Scholar · View at Scopus
  19. A. A. Maximow, “Über experimentelle erzeugung von knochenmarks-gewebe,” Anatomischer Anzeiger, vol. 28, pp. 24–38, 1906. View at Google Scholar
  20. A. A. Novik, T. I. Ionova, G. Gorodokin, A. Smoljaninov, and B. V. Afanasyev, “The maximow 1909 centenary: a reappraisal,” Cellular Therapy and Transplantation, vol. 1, no. 3, pp. 31–34, 2009. View at Google Scholar · View at Scopus
  21. A. J. Becker, E. A. McCulloch, and J. E. Till, “Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells,” Nature, vol. 197, no. 4866, pp. 452–454, 1963. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Siminovitch, E. A. McCulloch, and J. E. Till, “The distribution of colony-forming cells among spleen colonies,” Journal of Cellular and Comparative Physiology, vol. 62, no. 3, pp. 327–336, 1963. View at Google Scholar
  23. T. M. Dexter, T. D. Allen, and L. G. Lajtha, “Conditions controlling the proliferation of haemopoietic stem cells in vitro,” Journal of Cellular Physiology, vol. 91, no. 3, pp. 335–344, 1977. View at Google Scholar · View at Scopus
  24. F. P. Barry and J. M. Murphy, “Mesenchymal stem cells: clinical applications and biological characterization,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 4, pp. 568–584, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. A. I. Caplan, “The mesengenic process,” Clinics in Plastic Surgery, vol. 21, no. 3, pp. 429–435, 1994. View at Google Scholar · View at Scopus
  27. W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells,” Expert Opinion on Biological Therapy, vol. 10, no. 2, pp. 505–517, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. M. Gimble, A. J. Katz, and B. A. Bunnell, “Adipose-derived stem cells for regenerative medicine,” Circulation Research, vol. 100, no. 9, pp. 1249–1260, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen, “Isolation of multipotent mesenchymal stem cells from umbilical cord blood,” Blood, vol. 103, no. 50, pp. 1669–1675, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. G. T. Huang, S. Gronthos, and S. Shi, “Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine,” Journal of Dental Research, vol. 88, no. 9, pp. 792–806, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. E. A. Jones, A. English, K. Henshaw et al., “Enumeration and phenotypic characterisation of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis,” Arthritis and Rheumatism, vol. 50, no. 3, pp. 817–827, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Janjanin, F. Djouad, R. M. Shanti et al., “Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells,” Arthritis Research and Therapy, vol. 10, no. 4, article R83, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. R. Shih, T. K. Kuo, A. H. Yang, O. K. Lee, and C. H. Lee, “Isolation and characterization of stem cells from the human parathyroid gland,” Cell Proliferation, vol. 42, no. 4, pp. 461–470, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. T. Jazedje, P. M. Perin, C. E. Czeresnia et al., “Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures,” Journal of Translational Medicine, vol. 7, article 46, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. M. Pevsner-Fischer, S. Levin, and D. Zipori, “The origins of mesenchymal stromal cell heterogeneity,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 560–568, 2011. View at Publisher · View at Google Scholar · View at PubMed
  37. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. Gronthos, P. J. Simmons, S. E. Graves, and P. G. Robey, “Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix,” Bone, vol. 28, no. 2, pp. 178–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, “Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. Y. H. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. F. Gao, D. Q. Wu, Y. H. Hu, and G. X. Jin, “Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells,” Chinese Medical Journal, vol. 121, no. 9, pp. 811–818, 2008. View at Google Scholar · View at Scopus
  42. J. Deng, B. E. Petersen, D. A. Steindler, M. L. Jorgensen, and E. D. Laywell, “Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation,” Stem Cells, vol. 24, no. 4, pp. 1054–1064, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. O'Donoghue, J. Chan, J. de la Fuente et al., “Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy,” Lancet, vol. 364, no. 9429, pp. 179–182, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. E. H. Javazon, K. J. Beggs, and A. W. Flake, “Mesenchymal stem cells: paradoxes of passaging,” Experimental Hematology, vol. 32, no. 5, pp. 414–425, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Moretta, C. Bottino, M. Vitale et al., “Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis,” Annual Review of Immunology, vol. 19, pp. 197–223, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. M. Digirolamo, D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop, “Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate,” British Journal of Haematology, vol. 107, no. 2, pp. 275–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Le Blanc and O. Ringdén, “Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 11, no. 5, pp. 321–334, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, and A. I. Caplan, “Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use,” Bone Marrow Transplantation, vol. 16, no. 4, pp. 557–564, 1995. View at Google Scholar · View at Scopus
  50. E. M. Horwitz, D. J. Prockop, A. Lorraine et al., “Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta,” Nature Medicine, vol. 5, no. 3, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. Chen, Z. Liu, N. Tian et al., “Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery,” Journal of Invasive Cardiology, vol. 18, no. 11, pp. 552–556, 2006. View at Google Scholar · View at Scopus
  54. S. H. Yoon, Y. S. Shim, Y. H. Park et al., “Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial,” Stem Cells, vol. 25, no. 8, pp. 2066–2073, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. R. Hass, C. Kasper, S. Bohm, and R. Jacobs, “Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC,” Cell Communication and Signaling, vol. 9, article 12, 2011. View at Publisher · View at Google Scholar · View at PubMed
  56. K. Timper, D. Seboek, M. Eberhardt et al., “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1135–1140, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. A. Zuk, “Adipose tissue-derived cell: looking back and looking ahead,” Molecular Biology of the Cell, vol. 21, no. 11, pp. 1783–1787, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Garcia-Olmo, D. Herreros, I. Pascual et al., “Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial,” Diseases of the Colon & Rectum, vol. 52, no. 1, pp. 79–86, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. B. Fang, Y. Song, R. C. Zhao, Q. Han, and Q. Lin, “Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis,” Transplantation Proceedings, vol. 39, no. 5, pp. 1710–1713, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. Fang, Y. Song, Q. Lin et al., “Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children,” Pediatric Transplantation, vol. 11, no. 7, pp. 814–817, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Lendeckel, A. Jödicke, P. Christophis et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery, vol. 32, no. 6, pp. 370–373, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. T. Yamamoto, M. Gotoh, R. Hattori et al., “Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases,” International Journal of Urology, vol. 17, no. 1, pp. 75–82, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. C. B. Gates, T. Karthikeyan, F. Fu, and J. Huard, “Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells,” Journal of the American Academy of Orthopaedic Surgeons, vol. 16, no. 2, pp. 68–76, 2008. View at Google Scholar · View at Scopus
  64. L. K. Carr, D. Steele, S. Steele et al., “1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence,” International Urogynecology Journal and Pelvic Floor Dysfunction, vol. 19, no. 6, pp. 881–883, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. L. B. Ohlsson, L. Varas, C. Kjellman, K. Edvardsen, and M. Lindvall, “Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix,” Experimental and Molecular Pathology, vol. 75, no. 3, pp. 248–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Zhu, Q. Sun, L. Liao et al., “Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1,” Leukemia, vol. 23, no. 5, pp. 925–933, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. K. Tian, S. Yang, Q. Ren et al., “p38 MAPK contributes to the growth inhibition of leukaemic tumor cells mediated by human umbilical cord mesenchymal stem cells,” Cellular Physiology and Biochemistry, vol. 26, no. 6, pp. 799–808, 2010. View at Google Scholar
  68. M. Konopleva, S. Konopleva, W. Hu, A. Y. Zaritskey, B. V. Afanasiev, and M. Andreeff, “Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins,” Leukemia, vol. 16, no. 9, pp. 1713–1724, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. Z. H. Wei, N. Y. Chen, H. X. Guo et al., “Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article 141, 2009. View at Publisher · View at Google Scholar · View at PubMed
  70. L. Li, H. Tian, W. M. Yue, F. Zhu, S. H. Li, and W. J. Li, “Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo,” Journal of Cellular Physiology, vol. 226, no. 7, pp. 1860–1867, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. L. Kucerova, M. Matuskova, K. Hlubinova, V. Altanerova, and C. Altaner, “Tumor cell behaviour modulation by mesenchymal stromal cells,” Molecular Cancer, vol. 9, article 129, 2010. View at Publisher · View at Google Scholar · View at PubMed
  72. A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. Y. M. Lin, G. Z. Zhang, Z. X. Leng et al., “Study on the bone marrow mesenchymal stem cells induced drug resistance in the U937 cells and its mechanism,” Chinese Medical Journal, vol. 119, no. 11, pp. 905–910, 2006. View at Google Scholar · View at Scopus
  74. A. V. Kurtova, K. Balakrishnan, R. Chen et al., “Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance,” Blood, vol. 114, no. 20, pp. 4441–4450, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. F. Vianello, F. Villanova, V. Tisato et al., “Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis,” Haematologica, vol. 95, no. 7, pp. 1081–1089, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. G. Lazennec and C. Jorgensen, “Concise review: adult multipotent stromal cells and cancer: risk or benefit?” Stem Cells, vol. 26, no. 6, pp. 1387–1394, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. K. Shinagawa, Y. Kitadai, M. Tanaka et al., “Mesenchymal stem cells enhance growth and metastasis of colon cancer,” International Journal of Cancer, vol. 127, no. 10, pp. 2323–2333, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. M. Miura, Y. Miura, H. M. Padilla-Nash et al., “Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation,” Stem Cells, vol. 24, no. 4, pp. 1095–1103, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. M. Takeuchi, K. Takeuchi, A. Kohara et al., “Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes,” In Vitro Cellular and Developmental Biology—Animal, vol. 43, no. 3-4, pp. 129–138, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. D. Rubio, S. Garcia, M. F. Paz et al., “Molecular characterization of spontaneous mesenchymal stem cell transformation,” PLoS ONE, vol. 3, no. 1, article e1398, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. R. Rodriguez, R. Rubio, M. Masip et al., “Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells,” Neoplasia, vol. 11, no. 4, pp. 397–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. F. Liu, Z. W. Chen, Z. H. Chen, Z. T. Zhang, and Y. Lu, “Multiple tumor types may originate from bone marrow-derived cells,” Neoplasia, vol. 8, no. 9, pp. 716–724, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. Tolar, A. J. Nauta, M. J. Osborn et al., “Sarcoma derived from cultured mesenchymal stem cells,” Stem Cells, vol. 25, no. 2, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4331–4339, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. E. L. Spaeth, J. L. Dembinski, A. K. Sasser et al., “Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression,” PLoS ONE, vol. 4, no. 4, article e4992, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. J. Reiser, X. Y. Zhang, C. S. Hemenway, D. Mondal, L. Pradhan, and V. F. La Russa, “Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases,” Expert Opinion on Biological Therapy, vol. 5, no. 12, pp. 1571–1584, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus