Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 480294, 14 pages
http://dx.doi.org/10.1155/2011/480294
Research Article

HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

1Institute of Mechanical Engineering and Automation, National University of Defense Technology, Changsha 410073, China
2Department of Software Engineering, Jiangnan Institute of Computing Technology, Wuxi 214083, China
3School of Computer, National University of Defense Technology, Changsha 410073, China

Received 23 May 2011; Accepted 24 August 2011

Academic Editor: Paul W. Doetsch

Copyright © 2011 Xiaomin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Ho, A. Gruhler, A. Heilbut et al., “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry,” Nature, vol. 415, no. 6868, pp. 180–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A comprehensive two-hybrid analysis to explore the yeast protein interactome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4569–4574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Spirin and L. A. Mirny, “Protein complexes and functional modules in molecular networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12123–12128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From molecular to modular cell biology,” Nature, vol. 402, no. 6761, pp. C47–C52, 1999. View at Google Scholar · View at Scopus
  5. M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya, “Development and implementation of an algorithm for detection of protein complexes in large interaction networks,” BMC Bioinformatics, vol. 7, article 207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. D. Bader and C. W. V. Hogue, “An automated method for finding molecular complexes in large protein interaction networks,” BMC Bioinformatics, vol. 4, article 2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. D. King, N. Pržulj, and I. Jurisica, “Protein complex prediction via cost-based clustering,” Bioinformatics, vol. 20, no. 17, pp. 3013–3020, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Chen and B. Yuan, “Detecting functional modules in the yeast protein-protein interaction network,” Bioinformatics, vol. 22, no. 18, pp. 2283–2290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. N. Chua, K. Ning, W. K. Sung, H. W. Leong, and L. Wong, “Using indirect protein-protein interactions for protein complex predication,” Life Sciences Society: Computational Systems Bioinformatics Conference, vol. 6, pp. 97–109, 2007. View at Google Scholar · View at Scopus
  12. G. Cui, Y. Chen, D. S. Huang, and K. Han, “An algorithm for finding functional modules and protein complexes in protein-protein interaction networks,” Journal of Biomedicine and Biotechnology, vol. 2008, Article ID 860270, 10 pages, 2008. View at Publisher · View at Google Scholar
  13. H. W. Mewes, S. Dietmann, D. Frishman et al., “MIPS: analysis and annotation of genome information in 2007,” Nucleic Acids Research, vol. 36, no. 1, pp. D196–D201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Güldener, M. Münsterkötter, G. Kastenmüller et al., “CYGD: the comprehensive yeast genome database,” Nucleic Acids Research, vol. 33, pp. D364–D368, 2005. View at Publisher · View at Google Scholar
  15. J. M. Cherry, C. Adler, C. Ball et al., “SGD: saccharomyces genome database,” Nucleic Acids Research, vol. 26, no. 1, pp. 73–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Brohée and J. van Helden, “Evaluation of clustering algorithms for protein-protein interaction networks,” BMC Bioinformatics, vol. 7, article 488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. Gavin, M. Bösche, R. Krause et al., “Functional organization of the yeast proteome by systematic analysis of protein complexes,” Nature, vol. 415, no. 6868, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. N. J. Krogan, W. T. Peng, G. Cagney et al., “High-definition macromolecular composition of yeast RNA-processing complexes,” Molecular Cell, vol. 13, no. 2, pp. 225–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. Gavin, P. Aloy, P. Grandi et al., “Proteome survey reveals modularity of the yeast cell machinery,” Nature, vol. 440, no. 7084, pp. 631–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari, “Modular decomposition of protein-protein interaction networks,” Genome Biology, vol. 5, no. 8, p. R57, 2004. View at Google Scholar · View at Scopus
  21. S. Killcoyne, G. W. Carter, J. Smith, and J. Boyle, “Cytoscape: a community-based framework for network modeling,” Methods in Molecular Biology, vol. 563, pp. 219–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Sanders, J. Jennings, A. Canutescu, A. J. Link, and P. A. Weil, “Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4723–4738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus