Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 535921, 10 pages
Review Article

The Development and the Use of Experimental Animal Models to Study the Underlying Mechanisms of CA Formation

1Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8501, Japan
2Department of Pharmacology, Graduate School of Medicine, Kyoto University, Konoe-cho Yoshida, Sakyo-ku, Kyoto 606-8315, Japan

Received 24 August 2010; Revised 6 November 2010; Accepted 13 December 2010

Academic Editor: Monica Fedele

Copyright © 2011 Tomohiro Aoki and Masaki Nishimura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cerebral aneurysms (CAs) have a high prevalence and can cause a lethal subarachnoid hemorrhage. Currently, CAs can only be treated with invasive surgical procedures. To unravel the underlying mechanisms of CA formation and to develop new therapeutic drugs for CAs, animal models of CA have been established, modified, and analyzed. Experimental findings from these models have clarified some of the potential mechanisms of CA formation, especially the relationship between hemodynamic stress and chronic inflammation. Increased hemodynamic stress acting at the site of bifurcation of cerebral arteries triggers an inflammatory response mediated by various proinflammatory molecules in arterial walls, inducing pathological changes in the models similar to those observed in the walls of human CAs. Findings from animal studies have provided new insights into CA formation and may contribute to the development of new therapeutic drugs for CAs.