Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 578207, 9 pages
http://dx.doi.org/10.1155/2011/578207
Methodology Report

Comparison of Methods for the Purification of Alpha-1 Acid Glycoprotein from Human Plasma

1Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada L8N 3Z5
2Canadian Blood Services Research and Development, Hamilton, ON, Canada L8N 3Z5
3School of Nursing, McMaster University, Hamilton, ON, Canada L8N 3Z5
4Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 3Z5

Received 13 September 2010; Revised 14 December 2010; Accepted 13 January 2011

Academic Editor: S. L. Mowbray

Copyright © 2011 Teresa R. McCurdy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Schmid, R. B. Nimberg, A. Kimura et al., “The carbohydrate units of human plasma α1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 492, no. 2, pp. 291–302, 1977. View at Google Scholar · View at Scopus
  2. M. J. Treuheit, C. E. Costello, and H. B. Halsall, “Analysis of the five glycosylation sites of human α1-acid glycoprotein,” Biochemical Journal, vol. 283, part 1, pp. 105–112, 1992. View at Google Scholar · View at Scopus
  3. T. Fournier, N. Medjoubi, and D. Porquet, “Alpha-1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 157–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Nicollet, J. P. Lebreton, M. Fontaine et al., “Evidence for alpha-1-acid glycoprotein populations of different pI values after concanavalin A affinity chromatography. Study of their evolution during inflammation in man,” Biochimica et Biophysica Acta, vol. 668, pp. 235–245, 1981. View at Google Scholar
  5. D. L. Schönfeld, R. B. G. Ravelli, U. Mueller, and A. Skerra, “The 1.8-Å crystal structure of α1-acid glycoprotein (orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin,” Journal of Molecular Biology, vol. 384, no. 2, pp. 393–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Bennett and K. Schmid, “Immunosuppression by human plasma α1-acid glycoprotein: importance of the carbohydrate moiety,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 10, pp. 6109–6113, 1980. View at Google Scholar · View at Scopus
  7. A. Boutten, M. Dehoux, M. Deschenes, J. D. Rouzeau, P. N. Bories, and G. Durand, “α 1-acid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1 β, interleukin-6 and tumor necrosis factor-α by human monocytes and alveolar and peritoneal macrophages,” European Journal of Immunology, vol. 22, no. 10, pp. 2687–2695, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Tilg, E. Vannier, G. Vachino, C. A. Dinarello, and J. W. Mier, “Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1β synthesis by human peripheral blood mononuclear cells,” Journal of Experimental Medicine, vol. 178, no. 5, pp. 1629–1636, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. F. L. A. C. Mestriner, F. Spiller, H. J. Laure et al., “Acute-phase protein α-1-acid glycoprotein mediates neutrophil migration failure in sepsis by a nitric oxide-dependent mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19595–19600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. M. Chiu, R. F. Mortensen, A. P. Osmand, and H. Gewurz, “Interactions of alpha1-acid glycoprotein with the immune system. I. Purification and effects upon lymphocyte responsiveness,” Immunology, vol. 32, no. 6, pp. 997–1005, 1977. View at Google Scholar · View at Scopus
  11. B. Haraldsson and B. Rippe, “Orosomucoid as one of the serum components contributing to normal capillary permselectivity in rat skeletal muscle,” Acta Physiologica Scandinavica, vol. 129, no. 1, pp. 127–135, 1987. View at Google Scholar · View at Scopus
  12. B. S. Haraldsson, E. K. A. Johnsson, and B. Rippe, “Glomerular permselectivity is dependent on adequate serum concentrations of orosomucoid,” Kidney International, vol. 41, no. 2, pp. 310–316, 1992. View at Google Scholar · View at Scopus
  13. F. E. Curry, J. C. Rutledge, and J. F. Lenz, “Modulation of microvessel wall charge by plasma glycoprotein orosomucoid,” American Journal of Physiology, vol. 257, no. 5, pp. H1354–H1359, 1989. View at Google Scholar · View at Scopus
  14. D. F. Moore, M. R. Rosenfeld, P. M. Gribbon, C. P. Winlove, and C. M. Tsai, “Alpha-1-acid (AAG, orosomucoid) glycoprotein: interaction with bacterial lipopolysaccharide and protection from sepsis,” Inflammation, vol. 21, no. 1, pp. 69–82, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. H. Kremer, J. Wilting, and L. H. M. Janssen, “Drug binding to human alpha-1-acid glycoprotein in health and disease,” Pharmacological Reviews, vol. 40, no. 1, pp. 1–47, 1988. View at Google Scholar · View at Scopus
  16. T. Hochepied, W. van Molle, F. G. Berger, H. Baumann, and C. Libert, “Involvement of the acute phase protein α 1-acid glycoprotein in nonspecific resistance to a lethal Gram-negative infection,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 14903–14909, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. E. M. Muchitsch, L. Pichler, H. P. Schwarz, and W. Ulrich, “Effects of human alpha-1-acid glycoprotein on aminonucleoside-induced minimal change nephrosis in rats,” Nephron, vol. 81, no. 2, pp. 194–199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. E. M. Muchitsch, W. Auer, and L. Pichler, “Effects of α1-acid glycoprotein in different rodent models of shock,” Fundamental and Clinical Pharmacology, vol. 12, no. 2, pp. 173–181, 1998. View at Google Scholar · View at Scopus
  19. I. G. Shemyakin, A. L. Pukhalsky, V. N. Stepanshina, G. V. Shmarina, V. A. Aleshkin, and S. S. Afanas'ev, “Preventive and therapeutic effects of α1-acid glycoprotein in mice infected with B. anthracis,” Bulletin of Experimental Biology and Medicine, vol. 140, no. 4, pp. 439–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. de Vries, S. J. Walter, T. G. A. M. Wolfs et al., “Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis,” Transplantation, vol. 78, no. 8, pp. 1116–1124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. E. Weimer, J. W. Mehl, and R. J. Winzler, “Studies on the mucoproteins of human plasma. V. Isolation and characterization of a homogeneous mucoprotein,” The Journal of Biological Chemistry, vol. 185, no. 2, pp. 561–568, 1950. View at Google Scholar · View at Scopus
  22. M. K. Hellerstein, V. Sasak, J. Ordovas, and H. N. Munro, “Isolation of alpha 1-acid glycoprotein from human plasma using high-performance liquid chromatography,” Analytical Biochemistry, vol. 146, no. 2, pp. 366–371, 1985. View at Google Scholar · View at Scopus
  23. J. Chan and D. Yu, “One-step isolation of alpha 1-acid glycoprotein,” Protein Expression and Purification, vol. 2, pp. 34–36, 1991. View at Google Scholar
  24. Y. Sugiyama, Y. Suzuki, Y. Sawada et al., “Auramine O as a fluorescent probe for the binding of basic drugs to human alpha 1-acid glycoprotein (alpha 1-AG). The development of a simple fluorometric method for the determination of alpha 1-AG in human serum,” Biochemical Pharmacology, vol. 34, pp. 821–829, 1985. View at Google Scholar
  25. P. A. Routledge, A. Barchowsky, T. D. Bjornsson et al., “Lidocaine plasma protein binding,” Clinical Pharmacology and Therapeutics, vol. 27, no. 3, pp. 347–351, 1980. View at Google Scholar · View at Scopus
  26. P. A. Charlwood, M. W. C. Hatton, and E. Regoeczi, “On the physicochemical and chemical properties of α 1-acid glycoproteins from mammalian and avian plasmas,” Biochimica et Biophysica Acta, vol. 453, no. 1, pp. 81–92, 1976. View at Google Scholar · View at Scopus
  27. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  28. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Google Scholar · View at Scopus
  29. F. Herve, M. C. Millot, C. B. Eap et al., “Two-step chromatographic purification of human plasma alpha(1)-acid glycoprotein: its application to the purification of rare phenotype samples of the protein and their study by chromatography on immobilized metal chelate affinity adsorbent,” Journal of Chromatography B, vol. 678, pp. 1–14, 1996. View at Google Scholar
  30. P. J. Fraker and J. C. Speck Jr., “Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril,” Biochemical and Biophysical Research Communications, vol. 80, no. 4, pp. 849–857, 1978. View at Google Scholar · View at Scopus
  31. W. P. Sheffield, A. Mamdani, G. Hortelano et al., “Effects of genetic fusion of factor IX to albumin on in vivo clearance in mice and rabbits,” British Journal of Haematology, vol. 126, no. 4, pp. 565–573, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. W. P. Sheffield, I. J. Smith, S. Syed, and V. Bhakta, “Prolonged in vivo anticoagulant activity of a hirudin-albumin fusion protein secreted from Pichia pastoris,” Blood Coagulation and Fibrinolysis, vol. 12, no. 6, pp. 433–443, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. A. E. Fox-Robichaud, H. K. Ondiveeran, T. McCurdy et al., “Alpha-1-acid glycoprotein reduces hepatic leukocyte recruitment in early sepsis,” Critical Care, vol. 9, p. 189, 2005. View at Google Scholar
  34. N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nature Protocols, vol. 1, no. 6, pp. 2876–2890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Travis, J. Bowen, D. Tewksbury et al., “Isolation of albumin from whole human plasma and fractionation of albumin depleted plasma,” Biochemical Journal, vol. 157, no. 2, pp. 301–306, 1976. View at Google Scholar · View at Scopus
  36. E. Gianazza and P. Arnaud, “A general method for fractionation of plasma proteins. Dye-ligand affinity chromatography on immobilized Cibacron Blue F3-GA,” Biochemical Journal, vol. 201, no. 1, pp. 129–136, 1982. View at Google Scholar · View at Scopus
  37. E. R. Carson and E. A. Jones, “Use of kinetic analysis and mathematical modeling in the study of metabolic pathways in vivo. Applications to hepatic organic anion metabolism (first of two parts),” The New England Journal of Medicine, vol. 300, no. 18, pp. 1016–1027, 1979. View at Google Scholar · View at Scopus
  38. M. A. Shifman and S. V. Pizzo, “The in vivo metabolism of antithrombin III and antithrombin II complexes,” Journal of Biological Chemistry, vol. 257, no. 6, pp. 3243–3248, 1982. View at Google Scholar · View at Scopus
  39. C. J. Steer and G. Ashwell, “Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes,” Journal of Biological Chemistry, vol. 255, no. 7, pp. 3008–3013, 1980. View at Google Scholar · View at Scopus
  40. K. Matsuo, H. Namatame, M. Taniguchi, and K. Gekko, “Membrane-induced conformational change of α1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy,” Biochemistry, vol. 48, no. 38, pp. 9103–9111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Yuasa, K. Umetsu, U. Vogt et al., “Human orosomucoid polymorphismml: molecular basis of the three common ORM1 alleles, ORM1*F1,ORM1*F2, and ORM1*S,” Human Genetics, vol. 99, no. 3, pp. 393–398, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Azzimonti, D. H. Atchley, C. A. Morrison et al., “One step purification of alpha1-acid glycoprotein from human plasma: fractionation of its polymorphic allele products,” Journal of Chromatography B, vol. 784, no. 1, pp. 33–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Zsila, Z. Bikadi, E. Hazai et al., “Organogold complexes probe a large beta-barrel cavity for human serum alpha1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 1784, pp. 1106–1114, 2008. View at Google Scholar
  44. K. Nishi, N. Sakai, Y. Komine, T. Maruyama, H. B. Halsall, and M. Otagiri, “Structural and drug-binding properties of α1-acid glycoprotein in reverse micelles,” Biochimica et Biophysica Acta, vol. 1601, no. 2, pp. 185–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Nishi, T. Maruyama, H. B. Halsall, T. Handa, and M. Otagiri, “Binding of α1-acid glycoprotein to membrane results in a unique structural change and ligand release,” Biochemistry, vol. 43, no. 32, pp. 10513–10519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Kopecký Jr., R. Ettrich, K. Hofbauerová, and V. Baumruk, “Structure of human α1-acid glycoprotein and its high-affinity binding site,” Biochemical and Biophysical Research Communications, vol. 300, no. 1, pp. 41–46, 2003. View at Publisher · View at Google Scholar · View at Scopus