Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 583929, 9 pages
http://dx.doi.org/10.1155/2011/583929
Review Article

TP53 Mutations in Nonsmall Cell Lung Cancer

Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511, Japan

Received 30 September 2010; Revised 28 November 2010; Accepted 20 December 2010

Academic Editor: Paul W. Doetsch

Copyright © 2011 Akira Mogi and Hiroyuki Kuwano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Lane and L. V. Crawford, “T antigen is bound to a host protein in SV40 transformed cells,” Nature, vol. 278, no. 5701, pp. 261–263, 1979. View at Google Scholar
  2. D. I. H. Linzer and A. J. Levine, “Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells,” Cell, vol. 17, no. 1, pp. 43–52, 1979. View at Google Scholar
  3. M. Kress, E. May, R. Cassingena, and P. May, “Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum,” Journal of Virology, vol. 31, no. 2, pp. 472–483, 1979. View at Google Scholar
  4. J. A. Melero, D. T. Stitt, W. F. Mangel, and R. B. Carroll, “Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and -transformed cells,” Virology, vol. 93, no. 2, pp. 466–480, 1979. View at Google Scholar
  5. A. J. Munro, S. Lain, and D. P. Lane, “P53 abnormalities and outcomes in colorectal cancer: a systematic review,” British Journal of Cancer, vol. 92, no. 3, pp. 434–444, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53 network,” Nature, vol. 16, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at PubMed
  7. K. H. Vousden and X. Lu, “Live or let die: the cell's response to p53,” Nature Reviews Cancer, vol. 2, no. 8, pp. 594–604, 2002. View at Publisher · View at Google Scholar · View at PubMed
  8. C. McKinney and C. Prives, Regulation of p53 DNA Binding. 25 Years of p53 Research, Springer, Dordrecht, The Netherlands, 2005.
  9. A. J. Levine, “p53, the cellular gatekeeper for growth and division,” Cell, vol. 88, no. 3, pp. 323–331, 1997. View at Publisher · View at Google Scholar
  10. S. Jin and A. J. Levine, “The p53 functional circuit,” Journal of Cell Science, vol. 114, no. 23, pp. 4139–4140, 2001. View at Google Scholar
  11. T. Riley, E. Sontag, P. Chen, and A. Levine, “Transcriptional control of human p53-regulated genes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 5, pp. 402–412, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. J. Pomerantz, N. Schreiber-Agus, N. J. Liégeois et al., “The Ink4a tumor suppressor gene product, p19(Arf), interacts with MDM2 and neutralizes MDM2's inhibition of p53,” Cell, vol. 92, no. 6, pp. 713–723, 1998. View at Publisher · View at Google Scholar
  13. Y. Zhang, Y. Xiong, and W. G. Yarbrough, “ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways,” Cell, vol. 92, no. 6, pp. 725–734, 1998. View at Publisher · View at Google Scholar
  14. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA:A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar
  15. S. M. Bodner, J. D. Minna, S. M. Jensen et al., “Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation,” Oncogene, vol. 7, no. 4, pp. 743–749, 1992. View at Google Scholar
  16. T. Takahashi, M. M. Nau, I. Chiba et al., “p53: a frequent target for genetic abnormalities in lung cancer,” Science, vol. 246, no. 4929, pp. 491–494, 1989. View at Google Scholar
  17. P. Hainaut, T. Soussi, B. Shomer et al., “Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects,” Nucleic Acids Research, vol. 25, no. 1, pp. 151–157, 1997. View at Publisher · View at Google Scholar
  18. P. Hainaut and K. G. Wiman, “30 years and a long way into p53 research,” The Lancet Oncology, vol. 10, no. 9, pp. 913–919, 2009. View at Publisher · View at Google Scholar
  19. L. J. Hofseth, S. P. Hussain, and C. C. Harris, “p53: 25 Years after its discovery,” Trends in Pharmacological Sciences, vol. 25, no. 4, pp. 177–181, 2004. View at Publisher · View at Google Scholar
  20. M. Olivier, S. P. Hussain, C. Caron de Fromentel, P. Hainaut, and C. C. Harris, “TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer,” IARC Scientific Publications, no. 157, pp. 247–270, 2004. View at Google Scholar
  21. T. Soussi, C. Ishioka, M. Claustres, and C. Béroud, “Locus-specific mutation databases: pitfalls and good practice based on the p53 experience,” Nature Reviews Cancer, vol. 6, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. M. Olivier, M. Hollstein, and P. Hainaut, “TP53 mutations in human cancers: origins, consequences, and clinical use,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 1, Article ID a001008, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. A. I. Robles and C. C. Harris, “Clinical outcomes and correlates of TP53 mutations and cancer,” Cold Spring Harbor perspectives in biology, vol. 2, no. 3, Article ID a001016, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. T. Soussi, “The p53 pathway and human cancer,” British Journal of Surgery, vol. 92, no. 11, pp. 1331–1332, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. M. Olivier, R. Eeles, M. Hollstein, M. A. Khan, C. C. Harris, and P. Hainaut, “The IARC TP53 database: new online mutation analysis and recommendations to users,” Human Mutation, vol. 19, no. 6, pp. 607–614, 2002. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Hollstein, D. Sidransky, B. Vogelstein, and C. C. Harris, “p53 Mutations in human cancers,” Science, vol. 253, no. 5015, pp. 49–53, 1991. View at Google Scholar
  27. A. Petitjean, E. Mathe, S. Kato et al., “Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database,” Human Mutation, vol. 28, no. 6, pp. 622–629, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. F. P. Li, J. F. Fraumeni, J. J. Mulvihill et al., “A cancer family syndrome in twenty-four kindreds,” Cancer Research, vol. 48, no. 18, pp. 5358–5362, 1988. View at Google Scholar
  29. S. Srivastava, Z. Zou, K. Pirollo, W. Blattner, and E. H. Chang, “Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome,” Nature, vol. 348, no. 6303, pp. 747–749, 1990. View at Publisher · View at Google Scholar · View at PubMed
  30. M. Olivier, D. E. Goldgar, N. Sodha et al., “Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype,” Cancer Research, vol. 63, no. 20, pp. 6643–6650, 2003. View at Google Scholar
  31. K. Ory, Y. Legros, C. Auguin, and T. Soussi, “Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation,” EMBO Journal, vol. 13, no. 15, pp. 3496–3504, 1994. View at Google Scholar
  32. A. Sigal and V. Rotter, “Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome,” Cancer Research, vol. 60, no. 24, pp. 6788–6793, 2000. View at Google Scholar
  33. M. J. Peart and C. Prives, “Mutant p53 gain of function: the NF-Y connection,” Cancer Cell, vol. 10, no. 3, pp. 173–174, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. A. Petitjean, M. I. W. Achatz, A. L. Borresen-Dale, P. Hainaut, and M. Olivier, “TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes,” Oncogene, vol. 26, no. 15, pp. 2157–2165, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. H. Song and Y. Xu, “Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways,” Cell Cycle, vol. 6, no. 13, pp. 1570–1573, 2007. View at Google Scholar
  36. S. Donzelli, F. Biagioni, F. Fausti, S. Strano, G. Fontemaggi, and G. Blandino, “Oncogenomic approaches in exploring gain of function of mutant p53,” Current Genomics, vol. 9, no. 3, pp. 200–207, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. R. Brosh and V. Rotter, “When mutants gain new powers: news from the mutant p53 field,” Nature Reviews Cancer, vol. 9, no. 10, pp. 701–713, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. I. Goldstein, V. Marcel, M. Olivier, M. Oren, V. Rotter, and P. Hainaut, “Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies,” Cancer Gene Therapy, vol. 18, no. 1, pp. 2–11, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. G. P. Pfeifer and A. Besaratinia, “Mutational spectra of human cancer,” Human Genetics, vol. 125, no. 5-6, pp. 493–506, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. P. W. Hinds, C. A. Finlay, R. S. Quartin et al., “Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes,” Cell Growth & Differentiation, vol. 1, no. 12, pp. 571–580, 1990. View at Google Scholar
  41. P. Hainaut and M. Hollstein, “p53 and human cancer: the first ten thousand mutations,” Advances in Cancer Research, vol. 77, pp. 81–137, 2000. View at Google Scholar
  42. G. P. Pfeifer, M. F. Denissenko, M. Olivier, N. Tretyakova, S. S. Hecht, and P. Hainaut, “Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers,” Oncogene, vol. 21, no. 48, pp. 7435–7451, 2002. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Perwez Hussain, M. H. Hollstein, and C. C. Harris, “p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment,” Annals of the New York Academy of Sciences, vol. 919, pp. 79–85, 2000. View at Google Scholar
  44. P. Hainaut and G. P. Pfeifer, “Patterns of p53→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke,” Carcinogenesis, vol. 22, no. 3, pp. 367–374, 2001. View at Google Scholar
  45. M. Baumann, D. Zips, and S. Appold, “Radiotherapy of lung cancer: technology meets biology meets multidisciplinarity,” Radiotherapy and Oncology, vol. 91, no. 3, pp. 279–281, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. K. Viktorsson, L. De Petris, and R. Lewensohn, “The role of p53 in treatment responses of lung cancer,” Biochemical and Biophysical Research Communications, vol. 331, no. 3, pp. 868–880, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. E. Steels, M. Paesmans, T. Berghmans et al., “Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis,” European Respiratory Journal, vol. 18, no. 4, pp. 705–719, 2001. View at Publisher · View at Google Scholar
  48. T. Takahashi, T. Takahashi, H. Suzuki et al., “The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern,” Oncogene, vol. 6, no. 10, pp. 1775–1778, 1991. View at Google Scholar
  49. C. H. Hensel, R. H. Xiang, A. Y. Sagaguchi, and S. L. Naylor, “Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer,” Oncogene, vol. 6, no. 6, pp. 1067–1071, 1991. View at Google Scholar
  50. Y. Sameshima, Y. Matsuno, S. Hirohashi et al., “Alterations of the p53 gene are common and critical events for the maintenance of malignant phenotypes in small-cell lung carcinoma,” Oncogene, vol. 7, no. 3, pp. 451–457, 1992. View at Google Scholar
  51. D. D'Amico, D. Carbone, T. Mitsudomi et al., “High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors,” Oncogene, vol. 7, no. 2, pp. 339–346, 1992. View at Google Scholar
  52. Y. Kishimoto, Y. Murakami, M. Shiraishi, K. Hayashi, and T. Sekiya, “Aberrations of the p53 tumor suppressor gene in human non-small cell carcinomas of the lung,” Cancer Research, vol. 52, no. 17, pp. 4799–4804, 1992. View at Google Scholar
  53. M. C. Tammemagi, J. R. McLaughlin, and S. B. Bull, “Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 7, pp. 625–634, 1999. View at Google Scholar
  54. M. B. Reichel, H. Ohgaki, I. Petersen, and P. Kleihues, “p53 mutations in primary human lung tumors and their metastases,” Molecular Carcinogenesis, vol. 9, no. 2, pp. 105–109, 1994. View at Google Scholar
  55. C. W. Miller, K. Simon, A. Aslo et al., “p53 Mutations in human lung tumors,” Cancer Research, vol. 52, no. 7, pp. 1695–1698, 1992. View at Google Scholar
  56. I. Chiba, T. Takahashi, M. M. Nau et al., “Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer,” Oncogene, vol. 5, no. 10, pp. 1603–1610, 1990. View at Google Scholar
  57. G. Sozzi, M. Miozzo, U. Pastorino et al., “Genetic evidence for an independent origin of multiple preneoplastic and neoplastic lung lesions,” Cancer Research, vol. 55, no. 1, pp. 135–140, 1995. View at Google Scholar
  58. C. C. Harris, “p53 tumor suppressor gene: from the basic research laboratory to the clinic—an abridged historical perspective,” Carcinogenesis, vol. 17, no. 6, pp. 1187–1198, 1996. View at Publisher · View at Google Scholar
  59. Y.-L. Chang, C.-T. Wu, J.-Y. Shih, and Y.-C. Lee, “Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers,” Annals of Surgical Oncology. In press. View at Publisher · View at Google Scholar · View at PubMed
  60. T. Mitsudomi, N. Hamajima, M. Ogawa, and T. Takahashi, “Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis,” Clinical Cancer Research, vol. 6, no. 10, pp. 4055–4063, 2000. View at Google Scholar
  61. S. L. Graziano, L. Gu, X. Wang et al., “Prognostic significance of mucin and P53 expression in stage ib non-small cell lung cancer: a laboratory companion study to CALGB 9633,” Journal of Thoracic Oncology, vol. 5, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar
  62. M. S. Tsao, S. Aviel-Ronen, K. Ding et al., “Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5240–5247, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. A. B. Custodio, J. L. González-Larriba, J. Bobokova et al., “Prognostic and predictive markers of benefit from adjuvant chemotherapy in early-stage non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 4, no. 7, pp. 891–910, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. D. Kandioler, G. Stamatis, W. Eberhardt et al., “Growing clinical evidence for the interaction of the p53 genotype and response to induction chemotherapy in advanced non-small cell lung cancer,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 5, pp. 1036–1041, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. R. Doll and A. B. Hill, “Mortality in relation to smoking ten years’ observations of British doctors,” British Medical Journal, vol. 1, no. 5396, pp. 1460–1467, 1964. View at Google Scholar
  66. S. S. Hecht, “Progress and challenges in selected areas of tobacco carcinogenesis,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 160–171, 2008. View at Publisher · View at Google Scholar · View at PubMed
  67. L. C. Koo and J. H. C. Ho, “Worldwide epidemiological patterns of lung cancer in nonsmokers,” International Journal of Epidemiology, vol. 19, no. 1, pp. S14–S23, 1990. View at Google Scholar
  68. J. E. Tyczynski, F. Bray, and D. M. Parkin, “Lung cancer in Europe in 2000: epidemiology, prevention, and early detection,” Lancet Oncology, vol. 4, no. 1, pp. 45–55, 2003. View at Publisher · View at Google Scholar
  69. J. E. Tyczynski, F. Bray, T. Aareleid et al., “Lung cancer mortality patterns in selected Central, Eastern and Southern European countries,” International Journal of Cancer, vol. 109, no. 4, pp. 598–610, 2004. View at Publisher · View at Google Scholar · View at PubMed
  70. J. E. Tyczynski and H. J. Berkel, “Mortality from lung cancer and tobacco smoking in Ohio (U.S.): will increasing smoking prevalence reverse current decreases in mortality?” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 5, pp. 1182–1187, 2005. View at Publisher · View at Google Scholar · View at PubMed
  71. W. P. Bennett, M. C. R. Alavanja, B. Blomeke et al., “Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women,” Journal of the National Cancer Institute, vol. 91, no. 23, pp. 2009–2014, 1999. View at Google Scholar
  72. K. Husgafvel-Pursiainen, P. Boffetta, A. Kannio et al., “p53 Mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer,” Cancer Research, vol. 60, no. 11, pp. 2906–2911, 2000. View at Google Scholar
  73. Y. Takagi, H. Osada, T. Kuroishi et al., “p53 mutations in non-small-cell lung cancers occurring in individuals without a past history of active smoking,” British Journal of Cancer, vol. 77, no. 10, pp. 1568–1572, 1998. View at Google Scholar
  74. K. H. Vähäkangas, W. P. Bennett, K. Castrén et al., “p53 and K-ras mutations in lung cancers from former and never-smoking women,” Cancer Research, vol. 61, no. 11, pp. 4350–4356, 2001. View at Google Scholar
  75. P. Hainaut, M. Olivier, and G. P. Pfeifer, “TP53 mutation spectrum in lung cancers and mutagenic signature of components of tobacco smoke: lessons from the IARC TP53 mutation database,” Mutagenesis, vol. 16, pp. 551–553, 2001. View at Google Scholar
  76. S. P. Hussain and C. C. Harris, “Molecular epidemiology of human cancer,” Recent Results in Cancer Research, vol. 154, pp. 22–36, 1998. View at Google Scholar
  77. S. Toyooka, T. Tsuda, and A. F. Gazdar, “The TP53 gene, tobacco exposure, and lung cancer,” Human Mutation, vol. 21, no. 3, pp. 229–239, 2003. View at Publisher · View at Google Scholar · View at PubMed
  78. L. Ding, G. Getz, D. A. Wheeler et al., “Somatic mutations affect key pathways in lung adenocar,” Nature, vol. 455, pp. 1069–1075, 2008. View at Google Scholar
  79. M. F. Denissenko, A. Pao, M. S. Tang, and G. P. Pfeifer, “Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53,” Science, vol. 274, no. 5286, pp. 430–432, 1996. View at Publisher · View at Google Scholar
  80. L. E. Smith, M. F. Denissenko, W. P. Bennett et al., “Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons,” Journal of the National Cancer Institute, vol. 92, no. 10, pp. 803–811, 2000. View at Google Scholar
  81. M. F. Denissenko, T. B. Koudriakova, L. Smith, T. R. O'Connor, A. D. Riggs, and G. P. Pfeifer, “The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B adducts,” Oncogene, vol. 17, no. 23, pp. 3007–3014, 1998. View at Google Scholar
  82. T. M. Hernandez-Boussard and P. Hainaut, “A specific spectrum of p53 mutations in lung cancer from smokers: review of mutations compiled in the IARC p53 database,” Environmental Health Perspectives, vol. 106, no. 7, pp. 385–391, 1998. View at Google Scholar
  83. R. Gealy, L. Zhang, J. M. Siegfried, J. D. Luketich, and P. Keohavong, “Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, pp. 297–302, 1999. View at Google Scholar
  84. K. Kondo, H. Tsuzuki, M. Sasa, M. Sumitomo, T. Uyama, and Y. Monden, “A dose-response relationship between the frequency of p53 mutations and tobacco consumption in lung cancer patients,” Journal of Surgical Oncology, vol. 61, no. 1, pp. 20–26, 1996. View at Publisher · View at Google Scholar
  85. J. Subramanian and R. Govindan, “Molecular genetics of lung cancer in people who have never smoked,” The Lancet Oncology, vol. 9, no. 7, pp. 676–682, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. C. H. Gow, Y. L. Chang, Y. C. Hsu et al., “Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer,” Annals of Oncology, vol. 20, no. 4, pp. 696–702, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. T. Fujiwara, E. A. Grimm, T. Mukhopadhyay, W. W. Zhang, L. B. Owen-Schaub, and J. A. Roth, “Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene,” Cancer Research, vol. 54, no. 9, pp. 2287–2291, 1994. View at Google Scholar
  88. M. Higashiyama, K. Kodama, H. Yokouchi et al., “Immunohistochemical p53 protein status in nonsmall cell lung cancer is a promising indicator in determining in vitro chemosensitivity to some anticancer drugs,” Journal of Surgical Oncology, vol. 68, no. 1, pp. 19–24, 1998. View at Publisher · View at Google Scholar
  89. V. Rusch, D. Klimstra, E. Venkatraman et al., “Aberrant p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer,” Cancer Research, vol. 55, no. 21, pp. 5038–5042, 1995. View at Google Scholar
  90. U. Vogt, A. Zaczek, F. Klinke, A. Granetzny, K. Bielawski, and B. Falkiewicz, “p53 gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer,” Journal of Cancer Research and Clinical Oncology, vol. 128, no. 3, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at PubMed
  91. W. T. Leslie and P. D. Bonomi, “Novel treatments in non-small cell lung cancer,” Hematology/Oncology Clinics of North America, vol. 18, no. 1, pp. 245–267, 2004. View at Publisher · View at Google Scholar
  92. T. Fujiwara, De Wei Cai, R. N. Georges, T. Mukhopadhyay, E. A. Crimm, and J. A. Roth, “Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model,” Journal of the National Cancer Institute, vol. 86, no. 19, pp. 1458–1462, 1994. View at Google Scholar
  93. J. A. Roth, D. Nguyen, D. D. Lawrence et al., “Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer,” Nature Medicine, vol. 2, no. 9, pp. 985–991, 1996. View at Publisher · View at Google Scholar
  94. K. G. Wiman, “Strategies for therapeutic targeting of the p53 pathway in cancer,” Cell Death and Differentiation, vol. 13, no. 6, pp. 921–926, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. S. G. Swisher, J. A. Roth, J. Nemunaitis et al., “Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer,” Journal of the National Cancer Institute, vol. 91, no. 9, pp. 763–771, 1999. View at Google Scholar
  96. D. Weill, M. Mack, J. Roth et al., “Adenoviral-mediated p53 gene transfer to non-small cell lung cancer through endobronchial injection,” Chest, vol. 118, no. 4, pp. 966–970, 2000. View at Google Scholar
  97. J. Nemunaitis, S. G. Swisher, T. Timmons et al., “Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 18, no. 3, pp. 609–622, 2000. View at Google Scholar
  98. S. G. Swisher, J. A. Roth, R. Komaki et al., “Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy,” Clinical Cancer Research, vol. 9, pp. 93–101, 2003. View at Google Scholar
  99. N. Issaeva, P. Bozko, M. Enge et al., “Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors,” Nature Medicine, vol. 10, no. 12, pp. 1321–1328, 2004. View at Publisher · View at Google Scholar · View at PubMed
  100. G. Selivanova and K. G. Wiman, “Reactivation of mutant p53: molecular mechanisms and therapeutic potential,” Oncogene, vol. 26, no. 15, pp. 2243–2254, 2007. View at Publisher · View at Google Scholar · View at PubMed
  101. C. Y. Zhao, V. V. Grinkevich, F. Nikulenkov, W. Bao, and G. Selivanova, “Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA,” Cell Cycle, vol. 9, no. 9, pp. 1847–1855, 2010. View at Publisher · View at Google Scholar
  102. V. J. N. Bykov, N. Issaeva, A. Shilov et al., “Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound,” Nature Medicine, vol. 8, no. 3, pp. 282–288, 2002. View at Publisher · View at Google Scholar · View at PubMed
  103. V. J. N. Bykov, N. Zache, H. Stridh et al., “PRIMA-1 synergizes with cisplatin to induce tumor cell apoptosis,” Oncogene, vol. 24, no. 21, pp. 3484–3491, 2005. View at Publisher · View at Google Scholar · View at PubMed
  104. R. Magrini, D. Russo, L. Ottaggio, G. Fronza, A. Inga, and P. Menichini, “PRIMA-1 synergizes with adriamycin to induce cell death in non-small cell lung cancer cells,” Journal of Cellular Biochemistry, vol. 104, no. 6, pp. 2363–2373, 2008. View at Publisher · View at Google Scholar · View at PubMed
  105. T. Soussi and K. G. Wiman, “Shaping genetic alterations in human cancer: the p53 mutation paradigm,” Cancer Cell, vol. 12, no. 4, pp. 303–312, 2007. View at Publisher · View at Google Scholar · View at PubMed
  106. A. Vazquez, E. E. Bond, A. J. Levine, and G. L. Bond, “The genetics of the p53 pathway, apoptosis and cancer therapy,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 979–987, 2008. View at Publisher · View at Google Scholar · View at PubMed