Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 690848, 15 pages
http://dx.doi.org/10.1155/2011/690848
Review Article

Regulating the Regulators: The Post-Translational Code of Class I HDAC1 and HDAC2

Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy

Received 27 July 2010; Accepted 15 October 2010

Academic Editor: Minoru Yoshida

Copyright © 2011 Chiara V. Segré and Susanna Chiocca. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X.-J. Yang and E. Seto, “HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention,” Oncogene, vol. 26, no. 37, pp. 5310–5318, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. X.-J. Yang and E. Seto, “The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 206–218, 2008. View at Publisher · View at Google Scholar · View at PubMed
  3. I. V. Gregoretti, Y.-M. Lee, and H. V. Goodson, “Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis,” Journal of Molecular Biology, vol. 338, no. 1, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. D. Leipe and D. Landsman, “Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily,” Nucleic Acids Research, vol. 25, no. 18, pp. 3693–3697, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes and Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Villagra, F. Cheng, and F. Cheng, “The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance,” Nature Immunology, vol. 10, no. 1, pp. 92–100, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. H. Liu, Q. Hu, A. J. D'Ercole, and P. Ye, “Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells,” GLIA, vol. 57, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. O. Witt, H. E. Deubzer, T. Milde, and I. Oehme, “HDAC family: what are the cancer relevant targets?” Cancer Letters, vol. 277, no. 1, pp. 8–21, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. Hubbert, A. Guardiola, and A. Guardiola, “HDAC6 is a microtubule-associated deacetylase,” Nature, vol. 417, no. 6887, pp. 455–458, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. J. Kovacs, P. J. M. Murphy, and P. J. M. Murphy, “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor,” Molecular Cell, vol. 18, no. 5, pp. 601–607, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. D. Waltregny, W. Glénisson, S. L. Tran, B. J. North, E. Verdin, A. Colige, and V. Castronovo, “Histone deacetylase HDAC8 associates with smooth muscle α-actin and is essential for smooth muscle cell contractility,” FASEB Journal, vol. 19, no. 8, pp. 966–968, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. I. Oehme, H. E. Deubzer, and H. E. Deubzer, “Histone deacetylase 8 in neuroblastoma tumorigenesis,” Clinical Cancer Research, vol. 15, no. 1, pp. 91–99, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. Bhaskara, B. J. Chyla, J. M. Amann, S. K. Knutson, D. Cortez, Z.-W. Sun, and S. W. Hiebert, “Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control,” Molecular Cell, vol. 30, no. 1, pp. 61–72, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Eot-Houllier, G. Fulcrand, Y. Watanabe, L. Magnaghi-Jaulin, and C. Jaulin, “Histone deacetylase 3 is required for centromeric H3K4 deacetylation and sister chromatid cohesion,” Genes and Development, vol. 22, no. 19, pp. 2639–2644, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. K. Knutson, B. J. Chyla, J. M. Amann, S. Bhaskara, S. S. Huppert, and S. W. Hiebert, “Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks,” EMBO Journal, vol. 27, no. 7, pp. 1017–1028, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Haberland, R. L. Montgomery, and E. N. Olson, “The many roles of histone deacetylases in development and physiology: implications for disease and therapy,” Nature Reviews Genetics, vol. 10, no. 1, pp. 32–42, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. G. Zupkovitz, R. Grausenburger, and R. Grausenburger, “The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation,” Molecular and Cellular Biology, vol. 30, no. 5, pp. 1171–1181, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. G. Lagger, D. O'Carroll, and D. O'Carroll, “Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression,” EMBO Journal, vol. 21, no. 11, pp. 2672–2681, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. Senese, K. Zaragoza, and K. Zaragoza, “Role for histone deacetylase 1 in human tumor cell proliferation,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 4784–4795, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. W.-M. Yang, S.-C. Tsai, Y.-D. Wen, G. Fejé, and E. Seto, “Functional domains of histone deacetylase-3,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9447–9454, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Y. Takami and T. Nakayama, “N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line,” Journal of Biological Chemistry, vol. 275, no. 21, pp. 16191–16201, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. J. Kruhlak, M. J. Hendzel, and M. J. Hendzel, “Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38307–38319, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. L. Alland, G. David, and G. David, “Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2743–2750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Hassig, T. C. Fleischer, A. N. Billin, S. L. Schreiber, and D. E. Ayer, “Histone deacetylase activity is required for full transcriptional repression by mSin3A,” Cell, vol. 89, no. 3, pp. 341–347, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Feng and Y. Zhang, “The NuRD complex: linking histone modification to nucleosome remodeling,” Current Topics in Microbiology and Immunology, vol. 274, pp. 269–290, 2003. View at Google Scholar · View at Scopus
  28. T. C. Fleischer, U. J. Yun, and D. E. Ayer, “Identification and characterization of three new components of the mSin3A corepressor complex,” Molecular and Cellular Biology, vol. 23, no. 10, pp. 3456–3467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Denslow and P. A. Wade, “The human Mi-2/NuRD complex and gene regulation,” Oncogene, vol. 26, no. 37, pp. 5433–5438, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. W. Bruce, I. J. Donaldson, and I. J. Donaldson, “Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10458–10463, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. You, J. K. Tong, C. M. Grozinger, and S. L. Schreiber, “CoREST is an integral component of the CoREST-human histone deacetylase complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1454–1458, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. E. Choi, C. Han, and C. Han, “A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis,” Journal of Biological Chemistry, vol. 283, no. 50, pp. 35283–35294, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Liang, M. Wan, and M. Wan, “Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells,” Nature Cell Biology, vol. 10, no. 6, pp. 731–739, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. Li, J. Wang, Z. Nawaz, J. M. Liu, J. Qin, and J. Wong, “Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3,” EMBO Journal, vol. 19, no. 16, pp. 4342–4350, 2000. View at Google Scholar · View at Scopus
  35. C. T. Walsh, S. Garneau-Tsodikova, and G. J. Gatto Jr., “Protein posttranslational modifications: the chemistry of proteome diversifications,” Angewandte Chemie, vol. 44, no. 45, pp. 7342–7372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. Hoeller, C.-M. Hecker, and I. Dikic, “Ubiquitin and ubiquitin-like proteins in cancer pathogenesis,” Nature Reviews Cancer, vol. 6, no. 10, pp. 776–788, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. L. Montgomery, C. A. Davis, and C. A. Davis, “Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility,” Genes and Development, vol. 21, no. 14, pp. 1790–1802, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Haberland, A. Johnson, M. H. Mokalled, R. L. Montgomery, and E. N. Olson, “Genetic dissection of histone deacetylase requirement in tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 7751–7755, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. L. Montgomery, J. Hsieh, A. C. Barbosa, J. A. Richardson, and E. N. Olson, “Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 7876–7881, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. H. Wilting, E. Yanover, and E. Yanover, “Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis,” EMBO Journal, vol. 29, no. 15, pp. 2586–2597, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. B. H. Huang, M. Laban, and M. Laban, “Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1,” Cell Death and Differentiation, vol. 12, no. 4, pp. 395–404, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. O. M. Dovey, C. T. Foster, and S. M. Cowley, “Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8242–8247, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. J. Taplick, V. Kurtev, K. Kroboth, M. Posch, T. Lechner, and C. Seiser, “Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1,” Journal of Molecular Biology, vol. 308, no. 1, pp. 27–38, 2001. View at Publisher · View at Google Scholar · View at PubMed
  44. Y. L. Deribe, T. Pawson, and I. Dikic, “Post-translational modifications in signal integration,” Nature Structural and Molecular Biology, vol. 17, no. 6, pp. 666–672, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. R. Cai, P. Kwon, Y. Yan-Neale, L. Sambuccetti, D. Fischer, and D. Cohen, “Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation,” Biochemical and Biophysical Research Communications, vol. 283, no. 2, pp. 445–453, 2001. View at Publisher · View at Google Scholar · View at PubMed
  46. J. Rush, A. Moritz, and A. Moritz, “Immunoaffinity profiling of tyrosine phosphorylation in cancer cells,” Nature Biotechnology, vol. 23, no. 1, pp. 94–101, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. J.-M. Sun, Y. C. Hou, and J. R. Davie, “Differential distribution of unmodified and phosphorylated histone deacetylase 2 in chromatin,” Journal of Biological Chemistry, vol. 282, no. 45, pp. 33227–33236, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. M. K. H. Pflum, J. K. Tong, W. S. Lane, and S. L. Schreiber, “Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation,” Journal of Biological Chemistry, vol. 276, no. 50, pp. 47733–47741, 2001. View at Publisher · View at Google Scholar · View at PubMed
  49. P. Karwowska-Desaulniers, A. Ketko, N. Kamath, and M. K. H. Pflum, “Histone deacetylase 1 phosphorylation at S421 and S423 is constitutive in vivo, but dispensable in vitro,” Biochemical and Biophysical Research Communications, vol. 361, no. 2, pp. 349–355, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. S.-C. Tsai and E. Seto, “Regulation of histone deacetylase 2 by protein kinase CK2,” Journal of Biological Chemistry, vol. 277, no. 35, pp. 31826–31833, 2002. View at Publisher · View at Google Scholar · View at PubMed
  51. N. Dephoure, C. Zhou, J. Villén, S. A. Beausoleil, C. E. Bakalarski, S. J. Elledge, and S. P. Gygi, “A quantitative atlas of mitotic phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10762–10767, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. J.-M. Sun, H. Y. Chen, M. Moniwa, D. W. Litchfield, E. Seto, and J. R. Davie, “The transcriptional repressor Sp3 is associated with CK2-phosphorylated histone deacetylase 2,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 35783–35786, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. F. Meng, M. Han, B. Zheng, C. Wang, R. Zhang, X.-H. Zhang, and J.-K. Wen, “All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 13–18, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. Adenuga, H. Yao, T. H. March, J. Seagrave, and I. Rahman, “Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 4, pp. 464–473, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. D. Adenuga and I. Rahman, “Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes,” Archives of Biochemistry and Biophysics, vol. 498, no. 1, pp. 62–73, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. A. P. W. Poon, Y. Liang, and B. Roizman, “Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0,” Journal of Virology, vol. 77, no. 23, pp. 12671–12678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. Walters, A. Erazo, P. R. Kinchington, and S. Silverstein, “Histone deacetylases 1 and 2 are phosphorylated at novel sites during Varicella-Zoster virus infection,” Journal of Virology, vol. 83, no. 22, pp. 11502–11513, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. S. Walters, P. R. Kinchington, B. W. Banfield, and S. Silverstein, “Hyperphosphorylation of histone deacetylase 2 by alphaherpesvirus US3 kinases,” Journal of Virology, vol. 84, no. 19, pp. 9666–9676, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. R. B. Pearson and B. E. Kemp, “Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations,” Methods in Enzymology, vol. 200, pp. 62–81, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Pluemsampant, O. S. Safronova, K.-I. Nakahama, and I. Morita, “Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors,” International Journal of Cancer, vol. 122, no. 2, pp. 333–341, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. Q. Wang, S. Yin, and S. Yin, “Histone deacetylation is required for orderly meiosis,” Cell Cycle, vol. 5, no. 7, pp. 766–774, 2006. View at Google Scholar · View at Scopus
  62. S. C. Galasinski, K. A. Resing, J. A. Goodrich, and N. G. Ahn, “Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions,” Journal of Biological Chemistry, vol. 277, no. 22, pp. 19618–19626, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. G. Canettieri, I. Morantte, and I. Morantte, “Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex,” Nature Structural Biology, vol. 10, no. 3, pp. 175–181, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Q. Jin, A. Van Eynde, M. Beullens, N. Roy, G. Thiel, W. Stalmans, and M. Bollen, “The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor,” Journal of Biological Chemistry, vol. 278, no. 33, pp. 30677–30685, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. Yoshida, M. Kijima, M. Akita, and T. Beppu, “Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A,” Journal of Biological Chemistry, vol. 265, no. 28, pp. 17174–17179, 1990. View at Google Scholar · View at Scopus
  66. M. H. Brush, A. Guardiola, J. H. Connor, T.-P. Yao, and S. Shenolikar, “Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases,” Journal of Biological Chemistry, vol. 279, no. 9, pp. 7685–7691, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. C.-S. Chen, S.-C. Weng, P.-H. Tseng, H.-P. Lin, and C.-S. Chen, “Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes,” Journal of Biological Chemistry, vol. 280, no. 46, pp. 38879–38887, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. C. Guo, J. Mi, D. L. Brautigan, and J. M. Larner, “ATM regulates ionizing radiation-induced disruption of HDAC1:PP1:Rb complexes,” Cellular Signalling, vol. 19, no. 3, pp. 504–510, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. K. Koshibu, J. Gräff, and J. Gräff, “Protein phosphatase 1 regulates the histone code for long-term memory,” Journal of Neuroscience, vol. 29, no. 41, pp. 13079–13089, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. Y. Qiu, Y. Zhao, and Y. Zhao, “HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription,” Molecular Cell, vol. 22, no. 5, pp. 669–679, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. Y. Luo, W. Jian, D. Stavreva et al., “Trans-regulation of histone deacetylase activities through acetylation,” The Journal of Biological Chemistry, vol. 284, pp. 34901–34910, 2009. View at Google Scholar
  72. X. -J. Yang and E. Seto, “Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression,” Current Opinion in Genetics and Development, vol. 13, no. 2, pp. 143–153, 2003. View at Publisher · View at Google Scholar
  73. G. O. Osoata, S. Yamamura, M. Ito, C. Vuppusetty, I. M. Adcock, P. J. Barnes, and K. Ito, “Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2,” Biochemical and Biophysical Research Communications, vol. 384, no. 3, pp. 366–371, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. P. A. Grimsrud, H. Xie, T. J. Griffin, and D. A. Bernlohr, “Oxidative stress and covalent modification of protein with bioactive aldehydes,” Journal of Biological Chemistry, vol. 283, no. 32, pp. 21837–21841, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. G. David, M. A. Neptune, and R. A. Depinho, “SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities,” Journal of Biological Chemistry, vol. 277, no. 26, pp. 23658–23663, 2002. View at Publisher · View at Google Scholar · View at PubMed
  76. O. H. Krämer, P. Zhu, and P. Zhu, “The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2,” EMBO Journal, vol. 22, no. 13, pp. 3411–3420, 2003. View at Publisher · View at Google Scholar · View at PubMed
  77. Y. Li, X. Li, and B. Guo, “Chemopreventive agent 3,3-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases,” Cancer Research, vol. 70, no. 2, pp. 646–654, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. Q. Zhou, Z. K. Melkoumian, A. Lucktong, M. Moniwa, J. R. Davie, and J. S. Strobl, “Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35256–35263, 2000. View at Publisher · View at Google Scholar · View at PubMed
  79. L. Gaughan, I. R. Logan, D. E. Neal, and C. N. Robson, “Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation,” Nucleic Acids Research, vol. 33, no. 1, pp. 13–26, 2005. View at Publisher · View at Google Scholar · View at PubMed
  80. Y. M. Oh, Y. E. Kwon, and Y. E. Kwon, “Chfr is linked to tumour metastasis through the downregulation of HDAC1,” Nature Cell Biology, vol. 11, no. 3, pp. 295–302, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. Y. N. Vashisht Gopal, T. S. Arora, and M. W. Van Dyke, “Tumour necrosis factor-α depletes histone deacetylase 1 protein through IKK2,” EMBO Reports, vol. 7, no. 3, pp. 291–296, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. A. Hrzenjak, F. Moinfar, M.-L. Kremser, B. Strohmeier, P. B. Staber, K. Zatloukal, and H. Denk, “Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells,” Molecular Cancer Therapeutics, vol. 5, no. 9, pp. 2203–2210, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. R. Jürgen Dohmen, “SUMO protein modification,” Biochimica et Biophysica Acta, vol. 1695, no. 1–3, pp. 113–131, 2004. View at Publisher · View at Google Scholar · View at PubMed
  84. R. Colombo, R. Boggio, C. Seiser, G. F. Draetta, and S. Chiocca, “The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase 1,” EMBO Reports, vol. 3, no. 11, pp. 1062–1068, 2002. View at Publisher · View at Google Scholar · View at PubMed
  85. O. Kirsh, J.-S. Seeler, and J.-S. Seeler, “The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase,” EMBO Journal, vol. 21, no. 11, pp. 2682–2691, 2002. View at Publisher · View at Google Scholar · View at PubMed
  86. S.-H. Yang and A. D. Sharrocks, “SUMO promotes HDAC-mediated transcriptional repression,” Molecular Cell, vol. 13, no. 4, pp. 611–617, 2004. View at Publisher · View at Google Scholar
  87. Z. Gong, M. Brackertz, and R. Renkawitz, “SUMO modification enhances p66-mediated transcriptional repression of the Mi-2/NuRD complex,” Molecular and Cellular Biology, vol. 26, no. 12, pp. 4519–4528, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. E. S. Johnson, “Protein modification by SUMO,” Annual Review of Biochemistry, vol. 73, pp. 355–382, 2004. View at Publisher · View at Google Scholar · View at PubMed
  89. J. Cheng, D. Wang, Z. Wang, and E. T. H. Yeh, “SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1,” Molecular and Cellular Biology, vol. 24, no. 13, pp. 6021–6028, 2004. View at Publisher · View at Google Scholar · View at PubMed
  90. D. Mukhopadhyay and M. Dasso, “Modification in reverse: the SUMO proteases,” Trends in Biochemical Sciences, vol. 32, no. 6, pp. 286–295, 2007. View at Publisher · View at Google Scholar · View at PubMed
  91. Y. Shang, M. Myers, and M. Brown, “Formation of the androgen receptor transcription complex,” Molecular Cell, vol. 9, no. 3, pp. 601–610, 2002. View at Publisher · View at Google Scholar
  92. J. Song, Z. Zhang, W. Hu, and Y. Chen, “Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 40122–40129, 2005. View at Publisher · View at Google Scholar · View at PubMed
  93. H.-Y. Kuo, C.-C. Chang, and C.-C. Chang, “SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 47, pp. 16973–16978, 2005. View at Publisher · View at Google Scholar · View at PubMed
  94. X. Xu, J. Vatsyayan, C. Gao, C. J. Bakkenist, and J. Hu, “HDAC2 promotes eIF4E sumoylation and activates mRNA translation gene specifically,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18139–18143, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. B. M. Gaston, J. Carver, A. Doctor, and L. A. Palmer, “S-nitrosylation signaling in cell biology,” Molecular Interventions, vol. 3, no. 5, pp. 253–263, 2003. View at Google Scholar
  96. S.-R. Yang, A. S. Chida, and A. S. Chida, “Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages,” American Journal of Physiology, vol. 291, no. 1, pp. L46–L57, 2006. View at Publisher · View at Google Scholar · View at PubMed
  97. A. Nott, P. M. Watson, J. D. Robinson, L. Crepaldi, and A. Riccio, “S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons,” Nature, vol. 455, no. 7211, pp. 411–415, 2008. View at Publisher · View at Google Scholar · View at PubMed
  98. C. Colussi, C. Mozzetta, and C. Mozzetta, “HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19183–19187, 2008. View at Publisher · View at Google Scholar · View at PubMed
  99. S. B. Pakala, T. M. Bui-Nguyen, and T. M. Bui-Nguyen, “Regulation of NF-κB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis,” Journal of Biological Chemistry, vol. 285, no. 31, pp. 23590–23597, 2010. View at Publisher · View at Google Scholar · View at PubMed
  100. K. Doyle and F. A. Fitzpatrick, “Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 17417–17424, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. K. K. Meja, S. Rajendrasozhan, and S. Rajendrasozhan, “Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 3, pp. 312–323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. J. -H. Choi, H. J. Kwon, B. -I. Yoon, J. -H. Kim, S. U. Han, H. J. Joo, and D. -Y. Kim, “Expression profile of histone deacetylase 1 in gastric cancer tissues,” Japanese Journal of Cancer Research, vol. 92, no. 12, pp. 1300–1304, 2001. View at Google Scholar
  103. W. Weichert, A. Röske, and A. Röske, “Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis,” The Lancet Oncology, vol. 9, no. 2, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. K. Miyake, T. Yoshizumi, and T. Yoshizumi, “Expression of hypoxia-inducible factor-1α, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation,” Pancreas, vol. 36, no. 3, pp. e1–e9, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. W. Weichert, A. Röske, and A. Röske, “Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy,” British Journal of Cancer, vol. 98, no. 3, pp. 604–610, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. W. Weichert, A. Röske, and A. Röske, “Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo,” Clinical Cancer Research, vol. 14, no. 6, pp. 1669–1677, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. T. Rikimaru, A. Taketomi, Y.-I. Yamashita, K. Shirabe, T. Hamatsu, M. Shimada, and Y. Maehara, “Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma,” Oncology, vol. 72, no. 1-2, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. K. Halkidou, L. Gaughan, S. Cook, H. Y. Leung, D. E. Neal, and C. N. Robson, “Upregulation and nuclear recruitment of HDACl in hormone refractory prostate cancer,” Prostate, vol. 59, no. 2, pp. 177–189, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. J. M. Mariadason, “Making sense of HDAC2 mutations in colon cancer,” Gastroenterology, vol. 135, no. 5, pp. 1457–1459, 2008. View at Publisher · View at Google Scholar · View at PubMed
  110. P. A. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller, and W. K. Kelly, “Histone deacetylases and cancer: causes and therapies,” Nature Reviews Cancer, vol. 1, no. 3, pp. 194–202, 2001. View at Google Scholar · View at Scopus
  111. S. Grant, C. Easley, and P. Kirkpatrick, “Vorinostat,” Nature Reviews Drug Discovery, vol. 6, no. 1, pp. 21–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. “StatBite: FDA oncology drug product approved in 2009,” Journal of the National Cancer Institute, vol. 102, p. 219, 2010.
  113. O. A. Botrugno, F. Santoro, and S. Minucci, “Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer,” Cancer Letters, vol. 280, no. 2, pp. 134–144, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. C. Landles and G. P. Bates, “Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series,” EMBO Reports, vol. 5, no. 10, pp. 958–963, 2004. View at Publisher · View at Google Scholar · View at PubMed
  115. H. Noh, Y. O. Eun, Y. S. Ji, R. Y. Mi, O. K. Young, H. Ha, and B. L. Hi, “Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury,” American Journal of Physiology, vol. 297, no. 3, pp. F729–F738, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. P. J. Barnes, “Histone deacetylase-2 and airway disease,” Therapeutic Advances in Respiratory Disease, vol. 3, no. 5, pp. 235–243, 2009. View at Publisher · View at Google Scholar · View at PubMed