Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 701928, 10 pages
http://dx.doi.org/10.1155/2011/701928
Research Article

Proteomics Analyses of the Opportunistic Pathogen Burkholderia vietnamiensis Using Protein Fractionations and Mass Spectrometry

1Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Bolevard, Tucson, AZ 85721, USA
2Department of Soil Water and Environmental Science, University of Arizona, Tucson, AZ 85721, USA

Received 2 June 2011; Revised 27 August 2011; Accepted 27 August 2011

Academic Editor: Isabel Sá-Correia

Copyright © 2011 Samanthi Wickramasekara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Coenye and P. Vandamme, “Diversity and significance of Burkholderia species occupying diverse ecological niches,” Environmental Microbiology, vol. 5, no. 9, pp. 719–729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Aldhous, “Melioidosis? Never heard of it,” Nature, vol. 434, no. 7034, pp. 692–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Vermis, P. A. R. Vandamme, and H. J. Nelis, “Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media,” Journal of Applied Microbiology, vol. 95, no. 6, pp. 1191–1199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. W. Nelson, S. L. Butler, D. Krieg, and J. R. W. Govan, “Virulence factors of Burkholderia cepacia,” FEMS Immunology and Medical Microbiology, vol. 8, no. 2, pp. 89–98, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Riedel, M. Hentzer, O. Geisenberger et al., “N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms,” Microbiology, vol. 147, no. 12, pp. 3249–3262, 2001. View at Google Scholar · View at Scopus
  6. V. Venturi, A. Friscina, I. Bertani, G. Devescovi, and C. Aguilar, “Quorum sensing in the Burkholderia cepacia complex,” Research in Microbiology, vol. 155, no. 4, pp. 238–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Knight, R. Gill, A. Ruaux et al., “Crystallization and preliminary X-ray diffraction analysis of BipD, a virulence factor from Burkholderia pseudomallei,” Acta Crystallographica Section F, vol. 62, no. 8, pp. 761–764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Gu, M. Chen, Q. Wang, M. Zhang, B. Wang, and H. Wang, “Expression and purification of a functionally active recombinant GDP-mannosyltransferase (PimA) from Mycobacterium tuberculosis H37Rv,” Protein Expression and Purification, vol. 42, no. 1, pp. 47–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. W. Han, M. A. Uhl, S. J. Han, and W. Shi, “Expression of bvgAS of Bordetella pertussis represses flagellar biosynthesis of Escherichia coli,” Archives of Microbiology, vol. 171, no. 2, pp. 127–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Riedel, P. Carranza, P. Gehrig, F. Potthast, and L. Eberl, “Towards the proteome of Burkholderia cenocepacia H111: setting up a 2-DE reference map,” Proteomics, vol. 6, no. 1, pp. 207–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Gee, C. T. Sacchi, M. B. Glass et al., “Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei,” Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4647–4654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. Bodour, K. P. Drees, and R. M. Maier, “Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils,” Applied and Environmental Microbiology, vol. 69, no. 6, pp. 3280–3287, 2003. View at Google Scholar · View at Scopus
  13. G. M. Oosta, N. S. Mathewson, and G. N. Catravas, “Optimization of folin-ciocalteu reagent concentration in an automated lowry protein assay,” Analytical Biochemistry, vol. 89, no. 1, pp. 31–34, 1978. View at Google Scholar · View at Scopus
  14. C. V. Sapan, R. L. Lundblad, and N. C. Price, “Colorimetric protein assay techniques,” Biotechnology and Applied Biochemistry, vol. 29, no. 2, pp. 99–108, 1999. View at Google Scholar · View at Scopus
  15. K. Riedel, C. Arevalo-Ferro, G. Reil, A. Görg, F. Lottspeich, and L. Eberl, “Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics,” Electrophoresis, vol. 24, no. 4, pp. 740–750, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Gharahdaghi, C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische, “Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity,” Electrophoresis, vol. 20, no. 3, pp. 601–605, 1999. View at Google Scholar · View at Scopus
  18. L. Breci, E. Hattrup, M. Keeler, J. Letarte, R. Johnson, and P. A. Haynes, “Comprehensive proteomics in yeast using chromatographic fractionation, gas phase fractionation, protein gel electrophoresis, and isoelectric focusing,” Proteomics, vol. 5, no. 8, pp. 2018–2028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. N. L. Andon, S. Hollingworth, A. Koller, A. J. Greenland, J. R. Yates, and P. A. Haynes, “Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry,” Proteomics, vol. 2, no. 9, pp. 1156–1168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Wolters, M. P. Washburn, and J. R. Yates, “An automated multidimensional protein identification technology for shotgun proteomics,” Analytical Chemistry, vol. 73, no. 23, pp. 5683–5690, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. K. Eng, A. L. McCormack, and J. R. Yates, “An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 11, pp. 976–989, 1994. View at Google Scholar · View at Scopus
  22. J. R. Yates, J. K. Eng, A. L. McCormack, and D. Schieltz, “Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database,” Analytical Chemistry, vol. 67, no. 8, pp. 1426–1436, 1995. View at Google Scholar · View at Scopus
  23. K. Xiao, D. B. McClatchy, A. K. Shukla et al., “Functional specialization of β-arrestin interactions revealed by proteomic analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12011–12016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Lim, J. Eng, J. R. Yates et al., “Identification of 2D-gel proteins: a comparison of MALDI/TOF peptide mass mapping to μ LC-ESI tandem mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 14, no. 9, pp. 957–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Tabb, W. H. McDonald, and J. R. Yates, “DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics,” Journal of Proteome Research, vol. 1, no. 1, pp. 21–26, 2002. View at Google Scholar · View at Scopus
  26. R. Craig and R. C. Beavis, “TANDEM: matching proteins with tandem mass spectra,” Bioinformatics, vol. 20, no. 9, pp. 1466–1467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Craig and R. C. Beavis, “A method for reducing the time required to match protein sequences with tandem mass spectra,” Rapid Communications in Mass Spectrometry, vol. 17, no. 20, pp. 2310–2316, 2003. View at Google Scholar · View at Scopus
  28. P. A. Haynes, S. Miller, T. Radabaugh et al., “The wildcat toolbox: a set of perl script utilities for use in peptide mass spectral database searching and proteomics experiments,” Journal of Biomolecular Techniques, vol. 17, no. 2, pp. 97–102, 2006. View at Google Scholar · View at Scopus
  29. A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, “Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search,” Analytical Chemistry, vol. 74, no. 20, pp. 5383–5392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, “A statistical model for identifying proteins by tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 17, pp. 4646–4658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. De La Fuente Van Bentem, D. Anrather, I. Dohnal et al., “Site-specific phosphorylation profiling of arabidopsis proteins by mass spectrometry and peptide chip analysis,” Journal of Proteome Research, vol. 7, no. 6, pp. 2458–2470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Eberl and K. Riedel, “Mining quorum sensing regulated proteins—role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics,” Proteomics, vol. 11, no. 15, pp. 3070–3085, 2011. View at Publisher · View at Google Scholar
  33. D. Kerk, J. Bulgrien, D. W. Smith, and M. Gribskov, “Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria,” Plant Physiology, vol. 131, no. 3, pp. 1209–1219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. C. T. Eggers, I. A. Murray, V. A. Delmar, A. G. Day, and C. S. Craik, “The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase,” Biochemical Journal, vol. 379, no. 1, pp. 107–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. G. Fain and J. D. Haddock, “Phenotypic and phylogenetic characterization of Burkholderia (Pseudomonas) sp. strain LB400,” Current Microbiology, vol. 42, no. 4, pp. 269–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. E. F. D'Orazio, M. Velasquez, N. R. Roan, O. Naveiras-Torres, and M. N. Starnbach, “The listeria monocytogenes lemA gene product is not required for intracellular infection or to activate fMIGWII-specific T cells,” Infection and Immunity, vol. 71, no. 12, pp. 6721–6727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Frommberger, P. Schmitt-Kopplin, F. Menzinger et al., “Analysis of N-acyl-L-homoserine lactones produced by Burkholderia cepacia with partial filling micellar electrokinetic chromatography—electrospray ionization-ion trap mass spectrometry,” Electrophoresis, vol. 24, no. 17, pp. 3067–3074, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Huber, K. Riedel, M. Hentzer et al., “The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility,” Microbiology, vol. 147, no. 9, pp. 2517–2528, 2001. View at Google Scholar · View at Scopus
  39. T. A. Gould, J. Herman, J. Krank, R. C. Murphy, and M. E. A. Churchill, “Specificity of acyl-homoserine lactone synthases examined by mass spectrometry,” Journal of Bacteriology, vol. 188, no. 2, pp. 773–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. McKenney, K. E. Brown, and D. G. Allison, “Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication,” Journal of Bacteriology, vol. 177, no. 23, pp. 6989–6992, 1995. View at Google Scholar · View at Scopus
  41. L. Eberl, “Quorum sensing in the genus Burkholderia,” International Journal of Medical Microbiology, vol. 296, no. 2-3, pp. 103–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Gotschlich, B. Huber, O. Geisenberger et al., “Synthesis of multiple N-Acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex,” Systematic and Applied Microbiology, vol. 24, no. 1, pp. 1–14, 2001. View at Google Scholar · View at Scopus
  43. J. L. Parke and D. Gurian-Sherman, “Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains,” Annual Review of Phytopathology, vol. 39, pp. 225–258, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Boin, M. J. Austin, and C. C. Häse, “Chemotaxis in Vibrio cholerae,” FEMS Microbiology Letters, vol. 239, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. L. Krumme, K. N. Timmis, and D. F. Dwyer, “Degradation of trichloroethylene by Pseudomonas-cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms,” Applied and Environmental Microbiology, vol. 59, no. 8, pp. 2746–2749, 1993. View at Google Scholar · View at Scopus
  46. J. H. Kang, D. Aasi, and Y. Katayama, “Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms,” Critical Reviews in Toxicology, vol. 37, no. 7, pp. 607–625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Ning, N. Graham, Y. Zhang, M. Nakonechny, and M. G. El-Din, “Degradation of endocrine disrupting chemicals by ozone/AOPs,” Ozone, vol. 29, no. 3, pp. 153–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Liu, Q. Wei, G. L. Bao, and Q. A. Ji, “Differential proteomics of outer membrane proteins between virulent and avirulent strains of Riemerella anatipestifer,” Progress in Biochemistry and Biophysics, vol. 35, no. 6, pp. 691–694, 2008. View at Google Scholar · View at Scopus
  49. H. J. Wu, A. H. J. Wang, and M. P. Jennings, “Discovery of virulence factors of pathogenic bacteria,” Current Opinion in Chemical Biology, vol. 12, no. 1, pp. 93–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Pavkova, M. Reichelova, P. Larsson et al., “Comparative proteome analysis of fractions enriched for membrane-associated proteins from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica strains,” Journal of Proteome Research, vol. 5, no. 11, pp. 3125–3134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. R. L. J. Graham, C. E. Pollock, S. N. O'Loughlin et al., “Multidimensional proteomic analysis of the soluble subproteome of the emerging nosocomial pathogen Ochrobactrum anthropi,” Journal of Proteome Research, vol. 5, no. 11, pp. 3145–3153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Rupp, “Proteomics on its way to study host-pathogen interaction in Candida albicans,” Current Opinion in Microbiology, vol. 7, no. 4, pp. 330–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. York, J. Stubbe, and A. J. Sinskey, “New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate,” Journal of Bacteriology, vol. 183, no. 7, pp. 2394–2397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Mahenthiralingam, T. A. Urban, and J. B. Goldberg, “The multifarious, multireplicon Burkholderia cepacia complex,” Nature Reviews Microbiology, vol. 3, no. 2, pp. 144–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Schulein, I. Gentschev, S. Schlor, R. Gross, and W. Goebel, “Identification and characterization of two functional domains of the hemolysin translocator protein hlyD,” Molecular and General Genetics, vol. 245, no. 2, pp. 203–211, 1994. View at Google Scholar · View at Scopus