Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 767930, 8 pages
http://dx.doi.org/10.1155/2011/767930
Research Article

Ginsenoside Rb1 Preconditioning Enhances eNOS Expression and Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats

Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China

Received 18 December 2010; Revised 3 July 2011; Accepted 22 July 2011

Academic Editor: Leon Spicer

Copyright © 2011 Rui Xia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Diabetes mellitus is associated with decreased NO bioavailability in the myocardium. Ginsenoside Rb1 has been shown to confer cardioprotection against ischemia reperfusion injury. The aim of this study was to investigate whether Ginsenoside Rb1 exerts cardioprotective effects during myocardial ischemia-reperfusion in diabetic rats and whether this effect is related to increase the production of NO via enhancing eNOS expression in the myocardium. The myocardial I/R injury were induced by occluding the left anterior descending artery for 30 min followed by 120 min reperfusion. An eNOS inhibitor L-NAME or Rb1 were respectively administered 25 min or 10 min before inducing ischemia. Ginsenoside Rb1 preconditioning reduced myocardial infarct size when compared with I/R group. Ginsenoside Rb1 induced myocardial protection was accompanied with increased eNOS expression and NO concentration and reduced plasma CK and LDH ( ). Moreover, the myocardial oxidative stress and tissue histological damage was attenuated by Ginsenoside Rb1 ( ). L-NAME abolished the protective effects of Ginsenoside Rb1. It is concluded that Ginsenoside Rb1 protects against myocardium ischemia/reperfusion injury in diabetic rat by enhancing the expression of eNOS and increasing the content of NO as well as inhibiting oxidative stress.