Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 971296, 10 pages
http://dx.doi.org/10.1155/2011/971296
Review Article

Bacterial Artificial Chromosome Mutagenesis Using Recombineering

1Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
2School of Science, Monash University, Sunway Campus, Room 2-5-29, Bandar Sunway, 46150, Malaysia

Received 2 August 2010; Accepted 21 October 2010

Academic Editor: Masamitsu Yamaguchi

Copyright © 2011 Kumaran Narayanan and Qingwen Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Frazer, D. G. Ballinger, D. R. Cox et al., “A second generation human haplotype map of over 3.1 million SNPs,” Nature, vol. 449, no. 7164, pp. 851–861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Hosoda, S. Nishimura, H. Uchida, and M. Ohki, “An F factor based cloning system for large DNA fragments,” Nucleic Acids Research, vol. 18, no. 13, pp. 3863–3869, 1990. View at Google Scholar · View at Scopus
  3. H. Shizuya, B. Birren, U.-J. Kim et al., “Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 18, pp. 8794–8797, 1992. View at Google Scholar · View at Scopus
  4. L. B. Nielsen, S. P. A. McCormick, V. Pierotti et al., “Human apolipoprotein B transgenic mice generated with 207- and 145- kilobase pair bacterial artificial chromosomes. Evidence that a distant 5- element confers appropriate transgene expression in the intestine,” Journal of Biological Chemistry, vol. 272, no. 47, pp. 29752–29758, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Antoch, E.-J. Song, A.-M. Chang et al., “Functional identification of the mouse circadian clock gene by transgenic BAC rescue,” Cell, vol. 89, no. 4, pp. 655–667, 1997. View at Google Scholar · View at Scopus
  6. J. R. Jessen, A. Meng, R. J. Mcfarlane et al., “Modification of bacterial artificial chromosomes through Chi-stimulated homologous recombination and its application in zebrafish transgenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5121–5126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Valjent, J. Bertran-Gonzalez, D. Hervé, G. Fisone, and J.-A. Girault, “Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice,” Trends in Neurosciences, vol. 32, no. 10, pp. 538–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Sharan, L. C. Thomason, S. G. Kuznetsov, and D. L. Court, “Recombineering: a homologous recombination-based method of genetic engineering,” Nature Protocols, vol. 4, no. 2, pp. 206–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Tenzen, F. Zembowicz, and C. A. Cowan, “Genome modification in human embryonic stem cells,” Journal of Cellular Physiology, vol. 222, no. 2, pp. 278–281, 2010. View at Publisher · View at Google Scholar
  10. J. C. Venter, M. D. Adams, E. W. Myers et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Baker and M. Cotten, “Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier,” Nucleic Acids Research, vol. 25, no. 10, pp. 1950–1956, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Simon, “Dysfunctional genomics: BACs to the rescue,” Nature Biotechnology, vol. 15, no. 9, p. 839, 1997. View at Google Scholar · View at Scopus
  13. G. Vassaux, “New cloning tools for the design of better transgenes,” Gene Therapy, vol. 6, no. 3, pp. 307–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. N. G. Copeland, N. A. Jenkins, and D. L. Court, “Recombineering: a powerful new tool for mouse functional genomics,” Nature Reviews Genetics, vol. 2, no. 10, pp. 769–779, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Shizuya and H. Kouros-Mehr, “The development and applications of the bacterial artificial chromosome cloning system,” Keio Journal of Medicine, vol. 50, no. 1, pp. 26–30, 2001. View at Google Scholar · View at Scopus
  16. G. Kotzamanis, W. Cheung, H. Abdulrazzak et al., “Construction of human artificial chromosome vectors by recombineering,” Gene, vol. 351, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sarov, S. Schneider, A. Pozniakovski et al., “A recombineering pipeline for functional genomics applied to Caenorhabditis elegans,” Nature Methods, vol. 3, no. 10, pp. 839–844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Yamamoto, H. Izumiya, M. Morita, E. Arakawa, and H. Watanabe, “Application of λ red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes,” Gene, vol. 438, no. 1-2, pp. 57–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. J. T. Venken, Y. He, R. A. Hoskins, and H. J. Bellen, “P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster,” Science, vol. 314, no. 5806, pp. 1747–1751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Court, J. A. Sawitzke, and L. C. Thomason, “Genetic engineering using homologous recombination,” Annual Review of Genetics, vol. 36, pp. 361–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Murphy, “Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli,” Journal of Bacteriology, vol. 180, no. 8, pp. 2063–2071, 1998. View at Google Scholar · View at Scopus
  22. Y. Zhang, F. Buchholz, J. P. P. Muyrers, and A. F. Stewart, “A new logic for DNA engineering using recombination in Escherichia coli,” Nature Genetics, vol. 20, no. 2, pp. 123–128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Narayanan, R. Williamson, Y. Zhang, A. F. Stewart, and P. A. Ioannou, “Efficient and precise engineering of a 200 kb β-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system,” Gene Therapy, vol. 6, no. 3, pp. 442–447, 1999. View at Publisher · View at Google Scholar
  24. D. L. Court, S. Swaminathan, D. Yu et al., “Mini-λ: a tractable system for chromosome and BAC engineering,” Gene, vol. 315, no. 1-2, pp. 63–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Narayanan, “Intact recombineering of highly repetitive DNA requires reduced induction of recombination enzymes and improved host viability,” Analytical Biochemistry, vol. 375, no. 2, pp. 394–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhang, J. P. P. Muyrers, G. Testa, and A. F. Stewart, “DNA cloning by homologous recombination in Escherichia coli,” Nature Biotechnology, vol. 18, no. 12, pp. 1314–1317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Ellis, D. Yu, T. DiTizio, and D. L. Court, “High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6742–6746, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Yu, J. A. Sawitzke, H. Ellis, and D. L. Court, “Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7207–7212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. P. Muyrers, Y. Zhang, G. Testa, and A. F. Stewart, “Rapid modification of bacterial artificial chromosomes by ET-recombination,” Nucleic Acids Research, vol. 27, no. 6, pp. 1555–1557, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. E. Karu, Y. Sakaki, H. Echols, and S. Linn, “The γ protein specified by bacteriophage λ. Structure and inhibitory activity for the recBC enzyme of Escherichia coli,” Journal of Biological Chemistry, vol. 250, no. 18, pp. 7377–7387, 1975. View at Google Scholar · View at Scopus
  31. K. C. Murphy, “Lambda Gam protein inhibits the helicase and χ-stimulated recombination activities of Escherichia coli RecBCD enzyme,” Journal of Bacteriology, vol. 173, no. 18, pp. 5808–5821, 1991. View at Google Scholar · View at Scopus
  32. S. A. Friedman and J. B. Hays, “Selective inhibition of Escherichia coli RecBC activities by plasmid-encoded GamS function of phage lambda,” Gene, vol. 43, no. 3, pp. 255–263, 1986. View at Google Scholar · View at Scopus
  33. S. Datta, N. Costantino, X. Zhou, and D. L. Court, “Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1626–1631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Imam, G. P. Patrinos, M. de Krom et al., “Modification of human beta-globin locus PAC clones by homologous recombination in Escherichia coli,” Nucleic Acids Research, vol. 28, no. 12, article E65, 2000. View at Google Scholar · View at Scopus
  35. D. Jamsai, M. Orford, M. Nefedov, S. Fucharoen, R. Williamson, and P. A. Ioannou, “Targeted modification of a human β-globin locus BAC clone using GET Recombination and an I-SceI counterselection cassette,” Genomics, vol. 82, no. 1, pp. 68–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Warming, N. Costantino, D. L. Court, N. A. Jenkins, and N. G. Copeland, “Simple and highly efficient BAC recombineering using galK selection,” Nucleic Acids Research, vol. 33, no. 4, article e36, pp. 1–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. N. Wong, V. C. Ng, M. C. Lin, H. F. Kung, D. Chan, and J. D. Huang, “Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli,” Nucleic Acids Research, vol. 33, no. 6, article e59, 2005. View at Google Scholar · View at Scopus
  38. J. A. Devito, “Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA Operons of Escherichia coli,” Nucleic Acids Research, vol. 36, no. 1, article e4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Kouprina and V. Larionov, “TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution,” Nature Reviews Genetics, vol. 7, no. 10, pp. 805–812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. J. Mullins, N. Kotelevtseva, A. C. Boyd, and J. J. Mullins, “Efficient Cre-lox linearisation of BACs: applications to physical mapping and generation of transgenic animals,” Nucleic Acids Research, vol. 25, no. 12, pp. 2539–2540, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Mejía and Z. Larin, “The assembly of large BACs by in vivo recombination,” Genomics, vol. 70, no. 2, pp. 165–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. P. D. Sadowski, “The Flp double cross system a simple efficient procedure for cloning DNA fragments,” BMC Biotechnology, vol. 3, article 9, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. H. Hoess and K. Abremski, “Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system,” Journal of Molecular Biology, vol. 181, no. 3, pp. 351–362, 1985. View at Google Scholar · View at Scopus
  44. M. McLeod, S. Craft, and J. R. Broach, “Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle,” Molecular and Cellular Biology, vol. 6, no. 10, pp. 3357–3367, 1986. View at Google Scholar · View at Scopus
  45. B. Sauer, “Site-specific recombination: developments and applications,” Current Opinion in Biotechnology, vol. 5, no. 5, pp. 521–527, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. S. O'Gorman, D. T. Fox, and G. M. Wahl, “Recombinase-mediated gene activation and site-specific integration in mammalian cells,” Science, vol. 251, no. 4999, pp. 1351–1355, 1991. View at Google Scholar · View at Scopus
  47. J. Fu, M. Teucher, K. Anastassiadis, W. Skarnes, and A. F. Stewart, “A recombineering pipeline to make conditional targeting constructs,” Methods in Enzymology, vol. 477, pp. 125–144, 2010. View at Publisher · View at Google Scholar
  48. F. W. Stahl and M. M. Stahl, “Recombination pathway specificity of CHI,” Genetics, vol. 86, no. 4, pp. 715–725, 1977. View at Google Scholar · View at Scopus
  49. T. Durfee, R. Nelson, S. Baldwin et al., “The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse,” Journal of Bacteriology, vol. 190, no. 7, pp. 2597–2606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. O'Connor, M. Peifer, and W. Bender, “Construction of large DNA segments in Escherichia coli,” Science, vol. 244, no. 4910, pp. 1307–1312, 1989. View at Google Scholar · View at Scopus
  51. M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, “Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14759–14763, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. X. W. Yang, P. Model, and N. Heintz, “Homologous recombination based modification in Esherichia coli and germline transmission in transgenic mice of a bacterial artificial chromsome,” Nature Biotechnology, vol. 15, no. 9, pp. 859–865, 1997. View at Google Scholar · View at Scopus
  53. E. Degryse, “Evaluation of Escherichia coli recBC sbcBC mutants for cloning by recombination in vivo,” Journal of Biotechnology, vol. 39, no. 2, pp. 181–187, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Degryse, “In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions,” Gene, vol. 170, no. 1, pp. 45–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Chartier, E. Degryse, M. Gantzer, A. Dieterlé, A. Pavirani, and M. Mehtali, “Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli,” Journal of Virology, vol. 70, no. 7, pp. 4805–4810, 1996. View at Google Scholar · View at Scopus
  56. T.-C. He, S. Zhou, L. T. Da Costa, J. Yu, K. W. Kinzler, and B. Vogelstein, “A simplified system for generating recombinant adenoviruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2509–2514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Bubeck, M. Winkler, and W. Bautsch, “Rapid cloning by homologous recombination in vivo,” Nucleic Acids Research, vol. 21, no. 15, pp. 3601–3602, 1993. View at Google Scholar · View at Scopus
  58. K. Kaiser and N. E. Murray, “Physical characterisation of the ‘Rac prophage’ in E. coli K12,” Molecular and General Genetics, vol. 175, no. 2, pp. 159–174, 1979. View at Google Scholar · View at Scopus
  59. J. D. Oliner, K. W. Kinzler, and B. Vogelstein, “In vivo cloning of PCR products in E.coli,” Nucleic Acids Research, vol. 21, no. 22, pp. 5192–5197, 1993. View at Google Scholar · View at Scopus
  60. K. Kaiser and N. E. Murray, “On the nature of sbcA mutations in E. coli K12,” Molecular and General Genetics, vol. 179, no. 3, pp. 555–563, 1980. View at Google Scholar · View at Scopus
  61. S. D. Barbour, H. Nagaishi, A. Templin, and A. J. Clark, “Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 67, no. 1, pp. 128–135, 1970. View at Google Scholar · View at Scopus
  62. J. A. K. W. Kiel, J. P. M. J. Vossen, and G. Venema, “A general method for the construction of Escherichia coli mutants by homologous recombination and plasmid segregation,” Molecular and General Genetics, vol. 207, no. 2-3, pp. 294–301, 1987. View at Google Scholar · View at Scopus
  63. K. C. Murphy, K. G. Campellone, and A. R. Poteete, “PCR-mediated gene replacement in Escherichia coli,” Gene, vol. 246, no. 1-2, pp. 321–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Yu, H. M. Ellis, E.-C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court, “An efficient recombination system for chromosome engineering in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5978–5983, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. S.-I. Kawaguchi and S. Kuramitsu, “Homologous ligation: a novel cloning method,” Trends in Genetics, vol. 10, no. 12, p. 420, 1994. View at Google Scholar · View at Scopus
  66. B. L. Sopher and A. R. La Spada, “Efficient recombination-based methods for bacterial artificial chromosome fusion and mutagenesis,” Gene, vol. 371, no. 1, pp. 136–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Gong, C. Zheng, M. L. Doughty et al., “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature, vol. 425, no. 6961, pp. 917–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Gong and X. W. Yang, “Modification of bacterial artificial chromosomes (BACs) and preparation of intact BAC DNA for generation of transgenic mice,” in Current Protocols in Neuroscience, chapter 5:unit 5 21, 2005. View at Google Scholar · View at Scopus
  69. J. Wang, M. Sarov, J. Rientjes et al., “An improved recombineering approach by adding RecA to λ red recombination,” Molecular Biotechnology, vol. 32, no. 1, pp. 43–53, 2006. View at Google Scholar · View at Scopus
  70. Y. Zhang, J. P. P. Muyrers, J. Rientjes, and F. Stewart, “Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells,” BMC Molecular Biology, vol. 4, no. 1, article 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Yang and B. Seed, “Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes,” Nature Biotechnology, vol. 21, no. 4, pp. 447–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Song, S.-K. Chung, and Y. Xu, “Modeling disease in human ESCs using an efficient BAC-based homologous recombination system,” Cell Stem Cell, vol. 6, no. 1, pp. 80–89, 2010. View at Publisher · View at Google Scholar
  73. G. Kotzamanis and C. Huxley, “Recombining overlapping BACs into a single larger BAC,” BMC Biotechnology, vol. 4, article 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Crouzet, L. Naudin, C. Orsini et al., “Recombinational construction in Escherichia coli of infectious adenoviral genomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1414–1419, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Domi and B. Moss, “Engineering of a vaccinia virus bacterial artificial chromosome in Escherichia coli by bacteriophage λ-based recombination,” Nature Methods, vol. 2, no. 2, pp. 95–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. F. Wussow, H. Fickenscher, and B. K. Tischer, “Red-mediated transposition and final release of the mini-F vector of a cloned infectious herpesvirus genome,” PloS One, vol. 4, no. 12, article e8178, 2009. View at Google Scholar
  77. M. Westenberg, H. M. Soedling, D. A. Mann, L. J. Nicholson, and C. T. Dolphin, “Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs,” Nucleic Acids Research, vol. 38, no. 16, article e166, 2010. View at Publisher · View at Google Scholar
  78. I. Poser, M. Sarov, J. R. A. Hutchins et al., “BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals,” Nature Methods, vol. 5, no. 5, pp. 409–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y.-S. Ooi, P. E. Warburton, N. V. Ravin, and K. Narayanan, “Recombineering linear DNA that replicate stably in E. coli,” Plasmid, vol. 59, no. 1, pp. 63–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Derbise, B. Lesic, D. Dacheux, J. M. Ghigo, and E. Carniel, “A rapid and simple method for inactivating chromosomal genes in Yersinia,” FEMS Immunology and Medical Microbiology, vol. 38, no. 2, pp. 113–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Lesic and L. G. Rahme, “Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa,” BMC Molecular Biology, vol. 9, article 20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. C. Groth, E. C. Olivares, B. Thyagarajan, and M. P. Calos, “A phage integrase directs efficient site-specific integration in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5995–6000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Sauer and N. Henderson, “Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 14, pp. 5166–5170, 1988. View at Google Scholar · View at Scopus