Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 178487, 9 pages
http://dx.doi.org/10.1155/2012/178487
Research Article

Electric-Field-Directed Self-Assembly of Active Enzyme-Nanoparticle Structures

1Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
2Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093-0412, USA

Received 2 September 2011; Accepted 13 October 2011

Academic Editor: Seunghun Hong

Copyright © 2012 Alexander P. Hsiao and Michael J. Heller. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Guo and S. Dong, “Biomolecule-nanoparticle hybrids for electrochemical biosensors,” TrAC—Trends in Analytical Chemistry, vol. 28, no. 1, pp. 96–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ariga, Q. Ji, and J. Hill, “Enzyme-encapsulated layer-by-layer assemblies: current status and challenges toward ultimate nanodevices,” in Advances in Polymer Science, F. Caruso, Ed., vol. 229, pp. 51–87, Springer, Berlin, Germany, 2010. View at Google Scholar
  3. N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosensors and Bioelectronics, vol. 17, no. 1-2, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Kobayashi and J. I. Anzai, “Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications,” Journal of Electroanalytical Chemistry, vol. 507, no. 1-2, pp. 250–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Limoges, J. M. Savéant, and D. Yazidi, “Avidin-biotin assembling of horseradish peroxidase multi-monomolecular layers on electrodes,” Australian Journal of Chemistry, vol. 59, no. 4, pp. 257–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, “Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption,” Journal of the American Chemical Society, vol. 117, no. 22, pp. 6117–6123, 1995. View at Google Scholar · View at Scopus
  7. M. Onda, K. Ariga, and T. Kunitake, “Activity and stability of glucose oxidase in molecular films assembled alternately with polyions,” Journal of Bioscience and Bioengineering, vol. 87, no. 1, pp. 69–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Onda, Y. Lvov, K. Ariga, and T. Kunitake, “Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption,” Biotechnology and Bioengineering, vol. 51, no. 2, pp. 163–167, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science, vol. 252, no. 5010, pp. 1164–1167, 1991. View at Google Scholar · View at Scopus
  10. S. V. Rao, K. W. Anderson, and L. G. Bachas, “Controlled layer-by-layer immobilization of horseradish peroxidase,” Biotechnology and Bioengineering, vol. 65, no. 4, pp. 389–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Hoshi, N. Sagae, K. Daikuhara, K. Takahara, and J. I. Anzai, “Multilayer membranes via layer-by-layer deposition of glucose oxidase and Au nanoparticles on a Pt electrode for glucose sensing,” Materials Science and Engineering C, vol. 27, no. 4, pp. 890–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. X. M. Zhao, “Soft lithographic methods for nano-fabrication,” Journal of Materials Chemistry, vol. 7, no. 7, pp. 1069–1074, 1997. View at Google Scholar · View at Scopus
  13. S. Bharathi and M. Nogami, “A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme,” Analyst, vol. 126, no. 11, pp. 1919–1922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Dehlinger, B. D. Sullivan, S. Esener, and M. J. Heller, “Electric-field-directed assembly of biomolecular-derivatized nanoparticles into higher-order structures,” Small, vol. 3, no. 7, pp. 1237–1244, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. Dey, K. Mohanta, and A. J. Pal, “Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles,” Langmuir, vol. 26, no. 12, pp. 9627–9631, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. M. Shao, X. Xu, J. Han et al., “Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors,” Langmuir, vol. 27, no. 13, pp. 8233–8240, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. M. Trau, D. A. Seville, and I. A. Aksay, “Field-induced layering of colloidal crystals,” Science, vol. 272, no. 5262, pp. 706–709, 1996. View at Google Scholar · View at Scopus
  18. K. D. Barbee, A. P. Hsiao, M. J. Heller, and X. Huang, “Electric field directed assembly of high-density microbead arrays,” Lab on a Chip, vol. 9, no. 22, pp. 3268–3274, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. R. Krishnan, D. A. Dehlinger, G. J. Gemmen, R. L. Mifflin, S. C. Esener, and M. J. Heller, “Interaction of nanoparticles at the DEP microelectrode interface under high conductance conditions,” Electrochemistry Communications, vol. 11, no. 8, pp. 1661–1666, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. Krishnan and M. J. Heller, “An AC electrokinetic method for enhanced detection of DNA nanoparticles,” Journal of Biophotonics, vol. 2, no. 4, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. R. Krishnan, B. D. Sullivan, R. L. Mifflin, S. C. Esener, and M. J. Heller, “Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions,” Electrophoresis, vol. 29, no. 9, pp. 1765–1774, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. R. C. Bailey, K. J. Stevenson, and J. T. Hupp, “Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition,” Advanced Materials, vol. 12, no. 24, pp. 1930–1934, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Progress in Materials Science, vol. 52, no. 1, pp. 1–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Haruyama and M. Aizawa, “Electron transfer between an electrochemically deposited glucose oxidase/Cu[II] complex and an electrode,” Biosensors and Bioelectronics, vol. 13, no. 9, pp. 1015–1022, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chemistry of Materials, vol. 12, no. 9, pp. 2721–2726, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Shi, Y. Lu, J. Sun et al., “Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer deposition,” Biomacromolecules, vol. 4, no. 5, pp. 1161–1167, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. Y. Solomentsev, M. Böhmer, and J. L. Anderson, “Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model,” Langmuir, vol. 13, no. 23, pp. 6058–6061, 1997. View at Google Scholar · View at Scopus
  28. M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir, vol. 13, no. 24, pp. 6375–6381, 1997. View at Google Scholar · View at Scopus
  29. S. R. Yeh, M. Seul, and B. I. Shraiman, “Assembly of ordered colloidal aggregates by electric-field-induced fluid flow,” Nature, vol. 386, no. 6620, pp. 57–59, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, “Photo- and electropatterning of hydrogel-encapsulated living cell arrays,” Lab on a Chip, vol. 5, no. 1, pp. 111–118, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. Cheng, E. L. Sheldon, A. Uribe et al., “Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips,” Nature Biotechnology, vol. 16, no. 6, pp. 541–546, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. F. Edman, D. E. Raymond, D. J. Wu et al., “Electric field directed nucleic acid hybridization on microchips,” Nucleic Acids Research, vol. 25, no. 24, pp. 4907–4914, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Gurtner, E. Tu, N. Jamshidi et al., “Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers,” Electrophoresis, vol. 23, no. 10, pp. 1543–1550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kueng, C. Kranz, and B. Mizaikoff, “Amperometric ATP biosensor based on polymer entrapped enzymes,” Biosensors and Bioelectronics, vol. 19, no. 10, pp. 1301–1307, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. R. G. Sosnowski, E. Tu, W. F. Butler, J. P. O'Connell, and M. J. Heller, “Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1119–1123, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Heller, D. A. Dehlinger, and B. D. Sullivan, “Parallel assisted assembly of multilayer DNA and protein nanoparticle structures using a CMOS electronic array,” in International Symposium on DNA-Based Nanoscale Integration, vol. 859 of AIP Conference Proceedings, pp. 73–81, May 2006. View at Publisher · View at Google Scholar
  37. D. Dehlinger, B. Sullivan, S. Esener, D. Hodko, P. Swanson, and M. J. Heller, “Automated combinatorial process for nanofabrication of structures using bioderivatized nanoparticles,” Journal of the Association for Laboratory Automation, vol. 12, no. 5, pp. 267–276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Dehlinger, B. D. Sullivan, S. Esener, and M. J. Heller, “Directed hybridization of DNA derivatized nanoparticles into higher order structures,” Nano Letters, vol. 8, no. 11, pp. 4053–4060, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus