Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 217164, 10 pages
http://dx.doi.org/10.1155/2012/217164
Research Article

The Anticaries Effect of a Food Extract (Shiitake) in a Short-Term Clinical Study

1Department of Cariology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30 Gothenburg, Sweden
2Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
3Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
4Department of Pharmaceutical Chemistry, School of Pharmacy, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
5DIPTERIS, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
6Microbiology Section, Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
7Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands

Received 30 August 2011; Accepted 21 September 2011

Academic Editor: Itzhak Ofek

Copyright © 2012 Peter Lingström et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lingström, F. O. J. van Ruyven, J. van Houte, and R. Kent, “The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans,” Journal of Dental Research, vol. 79, no. 2, pp. 770–777, 2000. View at Google Scholar · View at Scopus
  2. I. Kleinberg, “Controversy: a mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis,” Critical Reviews in Oral Biology and Medicine, vol. 13, no. 2, pp. 108–125, 2002. View at Google Scholar · View at Scopus
  3. R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” The Lancet, vol. 369, no. 9555, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. SBU, “Prevention of dental caries: a systematic review,” The Swedish Council on Technology Assessment in Health Care , Report 161, 2002. View at Google Scholar
  5. P. D. Marsh, “Dental plaque as a biofilm and a microbial community—implications for health and disease,” BMC Oral Health, vol. 6, supplement 1, article S14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Autio-Gold, “The role of chlorhexidine in caries prevention,” Operative Dentistry, vol. 33, no. 6, pp. 710–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. van Loveren, “Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects?” Caries Research, vol. 38, no. 3, pp. 286–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Buzalaf, J. P. Pessan, H. M. Honòrio, and J. M. ten Cate, “Mechanisms of action of floride for caries control,” Monographic Oral Sciences, vol. 22, pp. 97–114, 2011. View at Google Scholar
  9. D. J. Newman, “Natural products as leads to potential drugs: an old process or the new hope for drug discovery?” Journal of Medicinal Chemistry, vol. 51, no. 9, pp. 2589–2599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. F. Ferrazzano, I. Amato, A. Ingenito, A. Zarrelli, G. Pinto, and A. Pollio, “Plant polyphenols and their anti-cariogenic properties: a review,” Molecules, vol. 16, no. 2, pp. 1486–1507, 2011. View at Publisher · View at Google Scholar
  11. C. Signoretto, P. Canepari, C. Pruzzo, and G. Gazzani, “Anticaries and antiadhesive properties of food constituents and plant extracts and implications for oral health,” in Food Constituents and Oral Health: Current Status and Future Prospects, M. Wilson, Ed., Woodhead Publishing Limited, Cambridge, UK, 2009. View at Google Scholar
  12. N. Shouji, K. Takada, K. Fukushima, and M. Hirasawa, “Anticaries effect of a component from shiitake (an edible mushroom),” Caries Research, vol. 34, no. 1, pp. 94–98, 2000. View at Google Scholar · View at Scopus
  13. M. E. Venturini, C. S. Rivera, C. Gonzalez, and D. Blanco, “Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains,” Journal of Food Protection, vol. 71, no. 8, pp. 1701–1706, 2008. View at Google Scholar · View at Scopus
  14. C. J. van Nevel, J. A. Decuypere, N. Dierick, and K. Molly, “The influence of Lentinus edodes (Shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets,” Archives of Animal Nutrition, vol. 57, no. 6, pp. 399–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Daglia, A. Papetti, D. Mascherpa et al., “Plant and fungal food components with potential activity on the development of microbial oral diseases,” Journal of Biomedicine and Biotechnology, vol. 2011, 9 pages, 2011. View at Publisher · View at Google Scholar
  16. E. Zaura, M. J. Buijs, M. A. Hoogenkamp et al., “The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model,” Journal of Biomedicine and Biotechnology. In press.
  17. V. A. M. Gerardu, C. van Loveren, M. Heijnsbroek, M. J. Buijs, G. A. van der Weijden, and J. M. Ten Cate, “Effects of various rinsing protocols after the use of amine fluoride/stannous fluoride toothpaste on the acid production of dental plaque and tongue flora,” Caries Research, vol. 40, no. 3, pp. 245–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lingström, T. Imfeld, and D. Birkhed, “Comparison of three different methods for measurement of plaque-pH in humans after consumption of soft bread and potato chips,” Journal of Dental Research, vol. 72, no. 5, pp. 865–870, 1993. View at Google Scholar · View at Scopus
  19. A. A. Scheie, O. Fejerskov, P. Lingström, D. Birkhed, and F. Manji, “Use of palladium touch microelectrodes under field conditions for in vivo assessment of dental plaque pH in children,” Caries Research, vol. 26, no. 1, pp. 44–51, 1992. View at Google Scholar · View at Scopus
  20. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 7, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  21. L. Ciric, J. Pratten, M. Wilson, and D. Spratt, “Development of a novel multi-triplex qPCR method for the assessment of bacterial community structure in oral populations,” Environmental Microbiology Reports, vol. 2, no. 6, pp. 770–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. I. Griffiths, A. S. Whiteley, A. G. O'Donnell, and M. J. Bailey, “Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition,” Applied and Environmental Microbiology, vol. 66, no. 12, pp. 5488–5491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Turesky, N. D. Gilmore, and I. Glickman, “Reduced plaque formation by the chloromethyl analogue of victamine C,” Journal of Periodontology, vol. 41, no. 1, pp. 41–43, 1970. View at Google Scholar · View at Scopus
  24. M. M. Danser, M. F. Timmerman, Y. Jzerman, M. I. Piscaer, U. van der Velden, and G. A. van der Weijden, “Plaque removal with a novel manual toothbrush (X-Active) and the Braun Oral-B 3D Plaque Remover,” Journal of Clinical Periodontology, vol. 30, no. 2, pp. 138–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Spratt, D. O'Donnell, L. Ciric et al., “Evaluation of fungal extracts for their anti-gingivitis and anti-caries activity,” Submitted to Journal of Biomedicine and Biotechnology.
  26. C. D. Wu and G. X. Wei, “Tea as a functional food for oral health,” Nutrition, vol. 18, no. 5, pp. 443–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Yoo, R. M. Murata, and S. Duarte, “Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans,” Caries Research, vol. 45, no. 4, pp. 327–335, 2011. View at Publisher · View at Google Scholar
  28. J. M. T. Hamilton-Miller, “Anti-cariogenic properties of tea (Camellia sinensis),” Journal of Medical Microbiology, vol. 50, no. 4, pp. 299–302, 2001. View at Google Scholar · View at Scopus
  29. M. Elvin-Lewis and R. Steelman, “The anticariogenic effects of tea drinking among Dallas school children,” Journal of Dental Research, vol. 65, no. 3, p. 198, 1986. View at Google Scholar
  30. E. I. Weiss, A. Kozlovsky, D. Steinberg et al., “A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite,” FEMS Microbiology Letters, vol. 232, no. 1, pp. 89–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Koo, S. Duarte, R. M. Murata et al., “Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo,” Caries Research, vol. 44, no. 2, pp. 116–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Lif Holgerson, C. Stecksén-Blicks, I. Sjöström, and S. Twetman, “Effect of xylitol-containing chewing gums on interdental plaque-pH in habitual xylitol consumers,” Acta Odontologica Scandinavica, vol. 63, no. 4, pp. 233–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. W. Albertsson, A. Persson, P. Lingström, and J. W. V. van Dijken, “Effects of mouthrinses containing essential oils and alcohol-free chlorhexidine on human plaque acidogenicity,” Clinical Oral Investigations, vol. 14, no. 1, pp. 107–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Signoretto, G. Burlacchini, A. Marchi et al., “Testing a low molecular mass fraction of a mushroom (Lentinus edodes) extract formulated as an oral rinse in a cohort of volunteers,” Journal of Biomedicine and Biotechnology. In press.
  35. T. Ooshima, T. Minami, W. Aono, Y. Tamura, and S. Hamada, “Reduction of dental plaque deposition in humans by oolong tea extract,” Caries Research, vol. 28, no. 3, pp. 146–149, 1994. View at Google Scholar · View at Scopus
  36. S. J. Bhadbhade, A. B. Acharya, S. V. Rodrigues, and S. L. Thakur, “The antiplaque efficacy of pomegranate mouthrinse,” Quintessence International, vol. 42, no. 1, pp. 29–36, 2011. View at Google Scholar
  37. P. C. Baehni and Y. Takeuchi, “Anti-plaque agents in the prevention of biofilm-associated oral diseases,” Oral Diseases, vol. 9, supplement 1, pp. 23–29, 2003. View at Publisher · View at Google Scholar · View at Scopus