Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 235485, 8 pages
http://dx.doi.org/10.1155/2012/235485
Research Article

Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

1LSE, Ecole Militaire Polytechnique, P.O. Box 17 Bordj El Bahri, Algeria
2GEPEA, UMR 6144, DSEE, Ecole des Mines de Nantes, P.O. Box 44307 Nantes, France
3LDMV, Université de Boumerdes, P.O. Box 35000 Boumerdes, Algeria

Received 25 January 2012; Accepted 14 March 2012

Academic Editor: Kazim Husain

Copyright © 2012 Lyes Tarabet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Ramadhas, S. Jayaraj, and C. Muraleedharan, “Characterization and effect of using rubber seed oil as fuel in the compression ignition engines,” Renewable Energy, vol. 30, no. 5, pp. 795–803, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Pramanik, “Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine,” Renewable Energy, vol. 28, no. 2, pp. 239–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Silvico, R. Carlos, V. G. Marious, S. R. Leonardodos, and F. Guilherme, “Performance of a diesel generator fuelled with palm oil,” Fuel, vol. 81, pp. 2097–2102, 2002. View at Google Scholar
  4. O. M. I. Nwafor, “Emission characteristics of diesel engine running on vegetable oil with elevated fuel inlet temperature,” Biomass and Bioenergy, vol. 27, no. 5, pp. 507–511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Senthil Kumar, A. Kerihuel, J. Bellettre, and M. Tazerout, “A comparative study of different methods of using animal fat as a fuel in a compression ignition engine,” Journal of Engineering for Gas Turbines and Power, vol. 128, no. 4, pp. 907–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Ndayishimiye and M. Tazerout, “Use of palm oil-based biofuel in the internal combustion engines: performance and emissions characteristics,” Energy, vol. 36, no. 3, pp. 1790–1796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Gumus and S. Kasifoglu, “Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel,” Biomass and Bioenergy, vol. 34, no. 1, pp. 134–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. C. Meher, D. Vidya Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification—a review,” Renewable and Sustainable Energy Reviews, vol. 10, no. 3, pp. 248–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. I. Gigür, F. Karaosmanoglu, and H. A. Aksoy, “Methyl ester from safflower seed oil of Turkish origin as a biofuel for diesel engines,” Applied Biochemistry and Biotechnology, vol. 45-46, no. 1, pp. 103–112, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Peterson, D. L. Reece, D. L. Hammond, R. Cruz, and J. A. Thompson, “Comparison of ethyl and methyl esters of vegetable oils as diesel fuel substitute,” in Proceedings of the Alternate Energy Conference (ASAE '92), pp. 99–110, 1992.
  11. A. N. Ozsezen, M. Canakci, A. Turkcan, and C. Sayin, “Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters,” Fuel, vol. 88, no. 4, pp. 629–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Baiju, M. K. Naik, and L. M. Das, “A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil,” Renewable Energy, vol. 34, no. 6, pp. 1616–1621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Hess, M. J. Haas, T. A. Foglia, and W. N. Marmer, “Effect of antioxidant addition on NOx emissions from biodiesel,” Energy and Fuels, vol. 19, no. 4, pp. 1749–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Szybist, S. R. Kirby, and A. L. Boehman, “NOx emissions of alternative diesel fuels: a comparative analysis of biodiesel and FT diesel,” Energy and Fuels, vol. 19, no. 4, pp. 1484–1492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Agarwal, S. Sinha, and A. K. Agarwal, “Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine,” Renewable Energy, vol. 31, no. 14, pp. 2356–2369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Labeckas and S. Slavinskas, “The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions,” Energy Conversion and Management, vol. 47, no. 13-14, pp. 1954–1967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Devan and N. V. Mahalakshmi, “A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil-eucalyptus oil blends,” Applied Energy, vol. 86, no. 5, pp. 675–680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Tarabet, K. Loubar, M. S. Lounici, S. Hanchi, and M. Tazerout, “Experimental evaluation of performance and emissions of DI diesel engine fuelled with eucalyptus biodiesel,” in Proceedings of the Internal Combustion Engines: Performance, Fuel Economy and Emissions, pp. 167–176, IMechE, London, UK, 2011.
  19. L. Tarabet, M. S. Lounici, K. Loubar, S. Hanchi, and M. Tazerout, “Experimental investigation of eucalyptus biodiesel combustion in DI diesel engine,” in Proceedings of the 5th European Combustion Meeting, Cardiff, UK, 2011.