Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 292730, 11 pages
http://dx.doi.org/10.1155/2012/292730
Research Article

In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall

1Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada L8N 3Z5
2Canadian Blood Services, Research and Development, Hamilton, ON, Canada L8N 3Z5
3School of Nursing, McMaster University, Hamilton, ON, Canada L8N 3Z5
4Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 3Z5

Received 3 November 2011; Accepted 19 January 2012

Academic Editor: Saulius Butenas

Copyright © 2012 Teresa R. McCurdy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Blain, J. C. Mucklow, and M. D. Rawlins, “Determinants of plasma α1-acid glycoprotein (AAG) concentrations in health,” British Journal of Clinical Pharmacology, vol. 20, no. 5, pp. 500–502, 1985. View at Google Scholar · View at Scopus
  2. T. Fournier, N. Medjoubi-N, and D. Porquet, “Alpha-1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 157–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. H. Kremer, J. Wilting, and L. H. M. Janssen, “Drug binding to human alpha-1-acid glycoprotein in health and disease,” Pharmacological Reviews, vol. 40, no. 1, pp. 1–47, 1988. View at Google Scholar · View at Scopus
  4. G. A. Ricca, R. W. Hamilton, and J. W. McLean, “Rat α1-acid glycoprotein mRNA. Cloning of double-stranded cDNA and kinetics of induction of mRNA levels following acute inflammation,” Journal of Biological Chemistry, vol. 256, no. 20, pp. 10362–10368, 1981. View at Google Scholar · View at Scopus
  5. R. Cooper and J. Papaconstantinou, “Evidence for the existence of multiple α1-acid glycoprotein genes in the mouse,” Journal of Biological Chemistry, vol. 261, no. 4, pp. 1849–1853, 1986. View at Google Scholar · View at Scopus
  6. B. K. Ray, “Molecular cloning and nucleotide sequence of complementary DNA encoding rabbit α1-acid glycoprotein,” Biochemical and Biophysical Research Communications, vol. 178, no. 2, pp. 507–513, 1991. View at Publisher · View at Google Scholar
  7. H. Baumann and J. Gauldie, “The acute phase response,” Immunology Today, vol. 15, no. 2, pp. 74–80, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Clawson, J. Button, C. H. Woo, Y. C. Liao, and E. A. Smuckler, “In vitro release of α1-acid glycoprotein RNA sequences shows fidelity with the acute phase response in vivo,” Molecular Biology Reports, vol. 11, no. 3, pp. 163–172, 1986. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Hochepied, F. G. Berger, H. Baumann, and C. Libert, “α1-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties,” Cytokine and Growth Factor Reviews, vol. 14, no. 1, pp. 25–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Smolarczyk, A. Gils, J. Boncela, P. J. Declerck, and C. S. Cierniewski, “Function-stabilizing mechanism of plasminogen activator inhibitor type 1 induced upon binding to α1-acid glycoprotein,” Biochemistry, vol. 44, no. 37, pp. 12384–12390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Fournier, N. Medjoubi-N, and D. Porquet, “Alpha-1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 157–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Haraldsson and B. Rippe, “Orosomucoid as one of the serum components contributing to normal capillary permselectivity in rat skeletal muscle,” Acta Physiologica Scandinavica, vol. 129, no. 1, pp. 127–135, 1987. View at Google Scholar · View at Scopus
  13. B. S. Haraldsson, E. K. A. Johnsson, and B. Rippe, “Glomerular permselectivity is dependent on adequate serum concentrations of orosomucoid,” Kidney International, vol. 41, no. 2, pp. 310–316, 1992. View at Google Scholar · View at Scopus
  14. F. E. Curry, J. C. Rutledge, and J. F. Lenz, “Modulation of microvessel wall charge by plasma glycoprotein orosomucoid,” American Journal of Physiology, vol. 257, no. 5, pp. H1354–H1349, 1989. View at Google Scholar · View at Scopus
  15. J. E. Schnitzer and E. Pinney, “Quantitation of specific binding of orosomucoid to cultured microvascular endothelium: role in capillary permeability,” American Journal of Physiology, vol. 263, no. 1, pp. H48–H55, 1992. View at Google Scholar · View at Scopus
  16. D. Predescu, S. Predescu, T. Mcquistan, and G. E. Palade, “Transcytosis of α1-acidic glycoprotein in the continuous microvascular endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6175–6180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Sörensson, M. Ohlson, A. Björnson, and B. Haraldsson, “Orosomucoid has a cAMP-dependent effect on human endothelial cells and inhibits the action of histamine,” American Journal of Physiology, vol. 278, no. 5 47-5, pp. H1725–H1731, 2000. View at Google Scholar
  18. A. R. Pries, T. W. Secomb, and P. Gaehtgens, “The endothelial surface layer,” Pflugers Archiv European Journal of Physiology, vol. 440, no. 5, pp. 653–666, 2000. View at Google Scholar · View at Scopus
  19. C. Hjalmarsson, M. E. Lidell, and B. Haraldsson, “Beneficial effects of orosomucoid on the glomerular barrier in puromycin aminonucleoside-induced nephrosis,” Nephrology Dialysis Transplantation, vol. 21, no. 5, pp. 1223–1230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. E. Pricer Jr., R. L. Hudgin, G. Ashwell, R. J. Stockert, and A. G. Morell, “A membrane receptor protein for asialoglycoproteins,” Methods in Enzymology, vol. 34, no. C, pp. 688–691, 1974. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Regoeczi, M. T. Debanne, M. W. C. Hatton, and A. Koj, “Elimination of asialofetuin and asialoorosomucoid by the intact rat. Quantitative aspects of the hepatic clearance mechanism,” Biochimica et Biophysica Acta, vol. 541, no. 3, pp. 372–384, 1978. View at Google Scholar · View at Scopus
  22. W. M. Pardridge, A. J. Van Herle, and R. T. Naruse, “In vivo quantification of receptor-mediated uptake of asialoglycoproteins by rat liver,” Journal of Biological Chemistry, vol. 258, no. 2, pp. 990–994, 1983. View at Google Scholar · View at Scopus
  23. G. Ashwell and J. Harford, “Carbohydrate-specific receptors of the liver,” Annual Review of Biochemistry, vol. 51, pp. 531–554, 1982. View at Google Scholar · View at Scopus
  24. E. Regoeczi, M. W. C. Hatton, and P. A. Charlwood, “Carbohydrate mediated elimination of avian plasma glycoprotein in mammals,” Nature, vol. 254, no. 5502, pp. 699–701, 1975. View at Google Scholar · View at Scopus
  25. F. Hervé, P. D'Athis, D. Tremblay, J.-P. Tillement, and J. Barré, “Glycosylation study of the major genetic variants of human α 1-acid glycoprotein and of their pharmacokinetics in the rat,” Journal of Chromatography B, vol. 798, no. 2, pp. 283–294, 2003. View at Publisher · View at Google Scholar
  26. K. Parivar, L. Tolentino, G. Taylor, and S. Oie, “Elimination of non-reactive and weakly reactive human α1-acid glycoprotein after induction of the acute phase response in rats,” Journal of Pharmacy and Pharmacology, vol. 44, no. 5, pp. 447–450, 1992. View at Google Scholar
  27. W. P. Sheffield, “Modification of clearance of therapeutic and potentially therapeutic proteins,” Curr Drug Targets Cardiovasc Haematol Disord, vol. 1, no. 1, pp. 1–22, 2001. View at Google Scholar · View at Scopus
  28. F. Hervé, M.-C. Millot, C. B. Eap, J.-C. Duché, and J.-P. Tillement, “Two-step chromatographic purification of human plasma α1-acid glycoprotein: its application to the purification of rare phenotype samples of the protein and their study by chromatography on immobilized metal chelate affinity adsorbent,” Journal of Chromatography B, vol. 678, no. 1, pp. 1–14, 1996. View at Publisher · View at Google Scholar
  29. W. P. Sheffield, T. R. McCurdy, and V. Bhakta, “Fusion to albumin as a means to slow the clearance of small therapeutic proteins using the Pichia pastoris expression system: a case study,” Methods in Molecular Biology, vol. 308, pp. 145–154, 2005. View at Google Scholar · View at Scopus
  30. W. P. Sheffield, L. J. Eltringham-Smith, S. Gataiance, and V. Bhakta, “A long-lasting, plasmin-activatable thrombin inhibitor aids clot lysis in vitro and does not promote bleeding in vivo,” Thrombosis and Haemostasis, vol. 101, no. 5, pp. 867–877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. J. Fraker and J. C. Speck Jr., “Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril,” Biochemical and Biophysical Research Communications, vol. 80, no. 4, pp. 849–857, 1978. View at Google Scholar · View at Scopus
  32. W. P. Sheffield, I. J. Smith, S. Syed, and V. Bhakta, “Prolonged in vivo anticoagulant activity of a hirudin—albumin fusion protein secreted from Pichia pastoris,” Blood Coagulation and Fibrinolysis, vol. 12, no. 6, pp. 433–443, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. W. P. Sheffield, J. A. Marques, V. Bhakta, and I. J. Smith, “Modulation of clearance of recombinant serum albumin by either glycosylation or truncation,” Thrombosis Research, vol. 99, no. 6, pp. 613–621, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. E. Begbie, A. Mamdani, S. Gataiance et al., “An important role for the activation peptide domain in controlling factor IX levels in the blood of haemophilia B mice,” Thrombosis and Haemostasis, vol. 94, no. 6, pp. 1138–1147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Wall, G. Wilson, and A. L. Hubbard, “The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes,” Cell, vol. 21, no. 1, pp. 79–93, 1980. View at Google Scholar · View at Scopus
  36. C. J. Steer and G. Ashwell, “Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes,” Journal of Biological Chemistry, vol. 255, no. 7, pp. 3008–3013, 1980. View at Google Scholar · View at Scopus
  37. D. E. Keyler, P. R. Pentel, and D. B. Haughey, “Pharmacokinetics and toxicity of high-dose human α1-acid glycoprotein infusion in the rat,” Journal of Pharmaceutical Sciences, vol. 76, no. 2, pp. 101–104, 1987. View at Google Scholar · View at Scopus
  38. V. Gross, K. Steube, and T. A. Tran-Thi, “The role of N-glycosylation for the plasma clearance of rat liver secretory glycoproteins,” European Journal of Biochemistry, vol. 162, no. 1, pp. 83–88, 1987. View at Google Scholar · View at Scopus
  39. V. Gross, P. C. Heinrich, D. vom Berg et al., “Involvement of various organs in the initial plasma clearance of differently glycosylated rat liver secretory proteins,” European Journal of Biochemistry, vol. 173, no. 3, pp. 653–659, 1988. View at Google Scholar · View at Scopus
  40. C. B. S. Henry and B. R. Duling, “Permeation of the luminal capillary glycocalyx is determined by hyaluronan,” American Journal of Physiology, vol. 277, no. 2, pp. H508–H514, 1999. View at Google Scholar · View at Scopus
  41. S. H. Platts and B. R. Duling, “Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx,” Circulation Research, vol. 94, no. 1, pp. 77–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Sörensson, G. L. Matejka, M. Ohlson, and B. Haraldsson, “Human endothelial cells produce orosomucoid, an important component of the capillary barrier,” American Journal of Physiology, vol. 276, no. 2, pp. H530–H534, 1999. View at Google Scholar · View at Scopus
  43. J. Boncela, I. Papiewska, I. Fijalkowska, B. Walkowiak, and C. S. Cierniewski, “Acute phase protein α1-acid glycoprotein interacts with plasminogen activator inhibitor type 1 and stabilizes its inhibitory activity,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35305–35311, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. I. J. Goldstein and H. G. Winter, “The Griffonia simplicifolia I-B4 isolectin. A probe for alpha-D-galactosyl end groups,” Sub-Cellular Biochemistry, vol. 32, pp. 127–141, 1999. View at Google Scholar · View at Scopus
  45. H. K. Ondiveeran and A. E. Fox-Robichaud, “Pentastarch in a balanced solution reduces hepatic leukocyte recruitment in early sepsis,” Microcirculation, vol. 11, no. 8, pp. 679–687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. B. McDonald, E. F. McAvoy, F. Lam et al., “Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids,” Journal of Experimental Medicine, vol. 205, no. 4, pp. 915–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. I. De Agostini, S. C. Watkins, H. S. Slayter, H. Youssoufian, and R. D. Rosenberg, “Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta,” Journal of Cell Biology, vol. 111, no. 3, pp. 1293–1304, 1990. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Fridén, E. Oveland, O. Tenstad et al., “The glomerular endothelial cell coat is essential for glomerular filtration,” Kidney International, vol. 79, no. 12, pp. 1322–1330, 2011. View at Publisher · View at Google Scholar
  49. D. R. Flower, “The lipocalin protein family: structure and function,” Biochemical Journal, vol. 318, no. 1, pp. 1–14, 1996. View at Google Scholar · View at Scopus
  50. D. Schönfeld, G. Matschiner, L. Chatwell et al., “An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 20, pp. 8198–8203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Y. Wu and C. H. Wu, “Receptor-mediated gene delivery and expression in vivo,” Journal of Biological Chemistry, vol. 263, no. 29, pp. 14621–14624, 1988. View at Google Scholar · View at Scopus
  52. D. Y. Yang, C. H. Ouyang, F. G. Lu, X. W. Liu, and L. Q. Huang, “Targeting specificity and pharmacokinetics of asialoorosomucoid, a specific ligand for asialglycoprotein receptor on hepatocyte,” Journal of Digestive Diseases, vol. 8, no. 2, pp. 89–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Shibata, H. Okubo, H. Ishibashi, and K. Tsuda, “Rat α1-acid glycoprotein. Purification and immunological estimation of its serum concentration,” Biochimica et Biophysica Acta, vol. 495, no. 1, pp. 37–45, 1977. View at Google Scholar
  54. E. C. M. Brinkman-Van der Linden, R. Mollicone, R. Oriol, G. Larson, D. H. Van Den Eijnden, and W. Van Dijk, “A missense mutation in the FUT6 gene results in total absence of α3-fucosylation of human α1-acid glycoprotein,” Journal of Biological Chemistry, vol. 271, no. 24, pp. 14492–14495, 1996. View at Google Scholar · View at Scopus
  55. H. G. Jørgensen, M. A. Elliott, R. Priest, and K. D. Smith, “Modulation of sialyl Lewis X dependent binding to E-Selectin by glycoforms of alpha-1-acid glycoprotein expressed in rheumatoid arthritis,” Biomedical Chromatography, vol. 12, no. 6, pp. 343–349, 1998. View at Publisher · View at Google Scholar
  56. I. Rydén, P. Påhlsson, A. Lundblad, and T. Skogh, “Fucosylation of α1-acid glycoprotein (orosomucoid) compared with traditional biochemical markers of inflammation in recent onset rheumatoid arthritis,” Clinica Chimica Acta, vol. 317, no. 1-2, pp. 221–229, 2002. View at Publisher · View at Google Scholar
  57. E.-M. Muchitsch, W. Auer, and L. Pichler, “Effects of α1-acid glycoprotein in different rodent models of shock,” Fundamental and Clinical Pharmacology, vol. 12, no. 2, pp. 173–181, 1998. View at Google Scholar
  58. E.-M. Muchitsch, H. P. Schwarz, M. D. Ginsberg, L. Belayev, and R. Busto, “Beneficial effect of albumin therapy attributable to α1-acid glycoprotein?” Stroke, vol. 34, no. 1, pp. 4–5, 2003. View at Publisher · View at Google Scholar
  59. H. Ni, M. A. Blajchman, V. S. Ananthanarayanan, I. J. Smith, and W. P. Sheffield, “Mutation of any site of N-linked glycosylation accelerates the in vivo clearance of recombinant rabbit antithrombin,” Thrombosis Research, vol. 99, no. 4, pp. 407–415, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. R. J. Peach and S. O. Brennan, “Structural characterization of a glycoprotein variant of human serum albumin: albumin Casebrook (494 Asp → Asn),” Biochimica et Biophysica Acta, vol. 1097, no. 1, pp. 49–54, 1991. View at Publisher · View at Google Scholar · View at Scopus