Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 435982, 5 pages
http://dx.doi.org/10.1155/2012/435982
Research Article

Loop-Mediated Isothermal Amplification for Detection of Staphylococcus aureus in Dairy Cow Suffering from Mastitis

1The College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Dingzhou 073000, China
2Hebei Engineering and Technology Research Center of Veterinary Biological Products, Agricultural University of Hebei, Baoding 071000, China

Received 24 September 2012; Revised 7 November 2012; Accepted 7 November 2012

Academic Editor: Michael D. Coleman

Copyright © 2012 Zhang Tie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Jurgen, K. Barbel, W. Wilfried, Z. Michael, S. Axel, and F. Klaus, “The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme,” Veterinary Microbiology, vol. 96, no. 1, pp. 91–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. C. Yao, Veterinary Microbiology Experiment Guidance, China Agriculture Press, Beijing, China, 2002.
  3. N. Leblond-Bourget, H. Philippe, I. Mangin, and B. Decaris, “16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny,” International Journal of Systematic Bacteriology, vol. 46, no. 1, pp. 102–111, 1996. View at Google Scholar · View at Scopus
  4. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, article E63, 2000. View at Google Scholar · View at Scopus
  5. Y. Hara-Kudo, J. Nemoto, K. Ohtsuka et al., “Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification,” Journal of Medical Microbiology, vol. 56, no. 3, pp. 398–406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Hara-Kudo, M. Yoshino, T. Kojima, and M. Ikedo, “Loop-mediated isothermal amplification for the rapid detection of Salmonella,” FEMS Microbiology Letters, vol. 253, no. 1, pp. 155–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ohtsuki, K. Kawamoto, Y. Kato, M. M. Shah, T. Ezaki, and S. I. Makino, “Rapid detection of Brucella spp. by the loop-mediated isothermal amplification method,” Journal of Applied Microbiology, vol. 104, no. 6, pp. 1815–1823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Seki, Y. Yamashita, H. Torigoe, H. Tsuda, S. Sato, and M. Maeno, “Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae,” Journal of Clinical Microbiology, vol. 43, no. 4, pp. 1581–1586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. le Loir, F. Baron, and M. Gautier, “Staphylococcus aureus and food poisoning,” Genetics and Molecular Research, vol. 2, no. 1, pp. 63–76, 2003. View at Google Scholar · View at Scopus
  10. M. C. Martín, J. M. Fueyo, M. A. González-Hevia, and M. C. Mendoza, “Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 279–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. C. Shriver-Lake, Y. S. Shubin, and F. S. Ligler, “Detection of staphylococcal enterotoxin B in spiked food samples,” Journal of Food Protection, vol. 66, no. 10, pp. 1851–1856, 2003. View at Google Scholar · View at Scopus
  12. Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, “Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation,” Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 150–154, 2001. View at Publisher · View at Google Scholar · View at Scopus