Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 492608, 9 pages
Review Article

Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

1Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki 7010192, Japan
2Department of Biofunctional Chemistry, Division of Bioscience, Okayama University Graduate School of Natural Science and Technology, 3-1-1 Tsushima-Naka, Okayama 7008530, Japan
3Department of Dermatology, Kawasaki Medical School, 577 Matsushima, Kurashiki 7010192, Japan
4Research Center for Asbestos-Related Diseases, Okayama Rosai Hospital, 1-10-25 Chikko-Midorimachi, Minami-Ku, Okayama 7028055, Japan
5Department of Radiation Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki 7010192, Japan

Received 30 June 2011; Accepted 3 November 2011

Academic Editor: Vassilis Gorgoulis

Copyright © 2012 Hidenori Matsuzaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos.