Table of Contents Author Guidelines Submit a Manuscript

An erratum for this article has been published. To view the erratum, please click here.

Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 520380, 9 pages
Research Article

Flagellar Motility of Trypanosoma cruzi Epimastigotes

1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, 07000 México, DF, Mexico
2Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 México, DF, Mexico
3Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, 68120 Oaxaca, Mexico
4Unidad Monterrey, Centro de Investigación y Estudios Avanzados del IPN, 66600 Monterrey, Mexico
5FES Iztacala, UBIMED, UNAM, Estodo de México, 54090 México, DF, Mexico

Received 15 July 2011; Revised 28 September 2011; Accepted 29 September 2011

Academic Editor: Abhay R. Satoskar

Copyright © 2012 G. Ballesteros-Rodea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.