Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 541872, 12 pages
Review Article

PET/CT Imaging in Mouse Models of Myocardial Ischemia

1Department of Biomorphological and Functional Sciences and Institute of Biostructures and Bioimages of National Council of Research, University of Naples Federico II, Naples, Via S. Pansini 5, 80131 Naples, Italy
2CEINGE-Biotecnologie Avanzate scarl, Via G. Salvatore 486, 80145 Naples, Italy
3Department of Internal Medicine, Cardiovascular and Immunological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy

Received 4 November 2011; Revised 16 December 2011; Accepted 30 December 2011

Academic Editor: Andrea Vecchione

Copyright © 2012 Sara Gargiulo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.