Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 590693, 8 pages
http://dx.doi.org/10.1155/2012/590693
Research Article

Hydrogen Photoproduction by Rhodopseudomonas palustris 42OL Cultured at High Irradiance under a Semicontinuous Regime

Istituto per lo Studio degli Ecosistemi, Sede di Firenze, Consiglio Nazionale delle Ricerche, Polo Scientifico, Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Firenze, Italy

Received 10 March 2012; Revised 13 May 2012; Accepted 25 May 2012

Academic Editor: Chiu-Chung Young

Copyright © 2012 Pietro Carlozzi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The main goal of this study was to increase the hydrogen production rate improving the culture technique and the photobioreactor performances. Experiments were carried out at a constant culture temperature of 30°C and at an average irradiance of 480 W m−2 using a cylindrical photobioreactor (4.0 cm, internal diameter). The culture technique, namely, the semicontinuous regime for growing Rhodopseudomonas palustris 42OL made it possible to achieve a very high daily hydrogen production rate of 594 ± 61 mL (H2) L−1 d−1. This value, never reported for this strain, corresponds to about 25 mL (H2) L−1 h−1, and it was obtained when the hydraulic retention time (HRT) was of 225 hours. Under the same growth conditions, a very high biomass production rate (496 ± 45 mg (dw) L−1 d−1) was also achieved. Higher or lower HRTs caused a reduction in both the hydrogen and the biomass production rates. The malic-acid removal efficiency (MAre) was always higher than 90%. The maximal hydrogen yield was 3.03 mol H2 mol MA−1 at the HRT of 360 hours. The highest total energy conversion efficiency was achieved at the HRT of 225 hours.