Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 618081, 7 pages
http://dx.doi.org/10.1155/2012/618081
Research Article

Synergistic Antibacterial Effect between Silibinin and Antibiotics in Oral Bacteria

1Department of Dental Hygiene, Sun Moon University, Asan-si 336-708, Republic of Korea
2Department of Dental Hygiene, College of Natural Sciences, Dongeui University, Busan 614-714, Republic of Korea

Received 7 May 2011; Revised 4 July 2011; Accepted 14 July 2011

Academic Editor: Ikhlas A. Khan

Copyright © 2012 Young-Soo Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Grössner-Schreiber, T. Fetter, J. Hedderich, T. Kocher, S. Schreiber, and S. Jepsen, “Prevalence of dental caries and periodontal disease in patients with inflammatory bowel disease: a case-control study,” Journal of Clinical Periodontology, vol. 33, no. 7, pp. 478–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. R. Ekstrand, G. Bruun, and M. Bruun, “Plaque and gingival status as indicators for caries progression on approximal surfaces,” Caries Research, vol. 32, no. 1, pp. 41–45, 1998. View at Google Scholar · View at Scopus
  3. P. D. Marsh and D. J. Bradshaw, “Dental plaque as a biofilm,” Journal of Industrial Microbiology, vol. 15, no. 3, pp. 169–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. White, S. F. McClanahan, A. C. Lanzalaco et al., “The comparative efficacy of two commercial tartar control dentifrices in preventing calculus development and facilitating easier dental cleanings,” Journal of Clinical Dentistry, vol. 7, no. 2, pp. 58–64, 1996. View at Google Scholar · View at Scopus
  5. D. H. Nguyen and J. T. Martin, “Common dental infections in the primary care setting,” American Family Physician, vol. 77, no. 6, pp. 797–806, 2008. View at Google Scholar · View at Scopus
  6. R. P. Allaker and C. W. I. Douglas, “Novel anti-microbial therapies for dental plaque-related diseases,” International Journal of Antimicrobial Agents, vol. 33, no. 1, pp. 8–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. Ramamurthy, K. L. Schroeder, T. F. McNamara et al., “Root-surface caries in rats and humans: inhibition by a non-antimicrobial property of tetracyclines,” Advances in Dental Research, vol. 12, no. 2, pp. 43–50, 1998. View at Google Scholar · View at Scopus
  8. N. Wara-aswapati, D. Krongnawakul, D. Jiraviboon, S. Adulyanon, N. Karimbux, and W. Pitiphat, “The effect of a new toothpaste containing potassium nitrate and triclosan on gingival health, plaque formation and dentine hypersensitivity,” Journal of Clinical Periodontology, vol. 32, no. 1, pp. 53–58, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Feres, L. C. Figueiredo, M. Faveri, B. Stewart, and W. De Vizio, “The effectiveness of a preprocedural mouthrinse containing cetylpyridiniuir chloride in reducing bacteria in the dental office,” Journal of the American Dental Association, vol. 141, no. 4, pp. 415–422, 2010. View at Google Scholar · View at Scopus
  10. C. Pigrau and B. Almirante, “Oxazolidinones, glycopeptides and cyclic lipopeptides,” Enfermedades Infecciosas y Microbiologia Clinica, vol. 27, no. 4, pp. 236–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. C. Van Strydonck, M. F. Timmerman, U. Van Der Velden, and G. A. Van Der Weijden, “Plaque inhibition of two commercially available chlorhexidine mouthrinses,” Journal of Clinical Periodontology, vol. 32, no. 3, pp. 305–309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Saarni and H. Saarni, “Xylitol for messrooms–a method worth trying to prevent caries among seafarers,” Bulletin of the Institute of Maritime and Tropical Medicine in Gdynia, vol. 48, no. 1–4, pp. 91–97, 1997. View at Google Scholar · View at Scopus
  13. H. Yamamoto and T. Ogawa, “Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 4, pp. 921–924, 2002. View at Google Scholar · View at Scopus
  14. J. Mu, “Anti-cariogenicity of maceration extract of Momordica grosvenori: laboratory study,” Chinese Journal of Stomatology, vol. 33, no. 3, pp. 183–185, 1998. View at Google Scholar · View at Scopus
  15. J. D. Cha, M. R. Jeong, S. I. Jeong, and K. Y. Lee, “Antibacterial activity of sophoraflavanone G isolated from the roots of Sophora flavescens,” Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 858–864, 2007. View at Google Scholar · View at Scopus
  16. S. J. Polyak, C. Morishima, V. Lohmann et al., “Identification of hepatoprotective flavonolignans from silymarin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 5995–5999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Kren and D. Walterová, “Silybin and silymarin-new effects and applications,” Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia., vol. 149, no. 1, pp. 29–41, 2005. View at Google Scholar · View at Scopus
  18. K. A. Mereish, D. L. Bunner, D. R. Ragland, and D. A. Creasia, “Protection against microcystin-LR-induced hepatotoxicity by silymarin: biochemistry, histopathology, and lethality,” Pharmaceutical Research, vol. 8, no. 2, pp. 273–277, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Sangeetha, A. J. W. Felix, and N. Nalini, “Silibinin modulates biotransforming microbial enzymes and prevents 1,2-dimethylhydrazine-induced preneoplastic changes in experimental colon cancer,” European Journal of Cancer Prevention, vol. 18, no. 5, pp. 385–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Gažák, D. Walterová, and V. Křen, “Silybin and silymarin-new and emerging applications in medicine,” Current Medicinal Chemistry, vol. 14, no. 3, pp. 315–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gordon, D. A. Hobbs, D. S. Bowden et al., “Effects of Silybum marianum on serum hepatitis C virus RNA, alanine aminotransferase levels and well-being in patients with chronic hepatitis C,” Journal of Gastroenterology and Hepatology, vol. 21, no. 1, pp. 275–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. W. Cheung, N. Gibbons, D. W. Johnson, and D. L. Nicol, “Silibinin-a promising new treatment for cancer,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 3, pp. 186–195, 2010. View at Google Scholar · View at Scopus
  23. R. Gazak, K. Purchartova, P. Marhol et al., “Antioxidant and antiviral activities of silybin fatty acid conjugates,” European Journal of Medicinal Chemistry, vol. 45, no. 3, pp. 1059–1067, 2010. View at Google Scholar
  24. R. Gazak, P. Sedmera, M. Vrbacky et al., “Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity-role of individual hydroxyl groups,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 745–758, 2009. View at Google Scholar
  25. M. Momeny, M. R. Khorramizadeh, S. H. Ghaffari et al., “Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation,” European Journal of Pharmacology, vol. 591, no. 1–3, pp. 13–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. L. Dong, K. K. Hyung, Y. Park et al., “Gram-positive bacteria specific properties of silybin derived from Silybum marianum,” Archives of Pharmacal Research, vol. 26, no. 8, pp. 597–600, 2003. View at Google Scholar · View at Scopus
  27. J. D. Cha, M. R. Jeong, S. I. Jeong et al., “Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris,” Planta Medica, vol. 71, no. 2, pp. 186–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. J. Jung, J. D. Cha, S. H. Lee et al., “Involvement of staphylococcal protein A and cytoskeletal actin in Staphylococcus aureus invasion of cultured human oral epithelial cells,” Journal of Medical Microbiology, vol. 50, no. 1, pp. 35–41, 2001. View at Google Scholar · View at Scopus
  29. K. J. Kim, H. H. Yu, J. D. Cha, S. J. Seo, N. Y. Choi, and Y. O. You, “Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus,” Phytotherapy Research, vol. 19, no. 7, pp. 599–604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Mäser, D. Vogel, C. Schmid, B. Räz, and R. Kaminsky, “Identification and characterization of trypanocides by functional expression of an adenosine transporter from Trypanosoma brucei in yeast,” Journal of Molecular Medicine, vol. 79, no. 2, pp. 121–127, 2001. View at Google Scholar · View at Scopus
  31. R. De Poi, “Chlorhexidine as an anticaries agent,” Australian Dental Journal, vol. 46, no. 1, p. 60, 2001. View at Google Scholar · View at Scopus
  32. E. N. Ivanova, “Comparative efficacy of local anticarious agents,” Stomatologiya, vol. 69, no. 2, pp. 60–61, 1990. View at Google Scholar · View at Scopus