Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 637125, 9 pages
Research Article

Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

1Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
2Environmental Geochemistry, China University of Geosciences, 29 Xueyuan Lu, Beijing 100083, China
3Research Institute of Tsukuba Bio-Tech Corporation, 2-10-1 Matsushiro, Ibaraki Tsukuba 305-0035, Japan

Received 20 February 2012; Revised 15 April 2012; Accepted 29 April 2012

Academic Editor: Claudio M. Soares

Copyright © 2012 Toshiyuki Kimura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta) were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.