Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 875383, 10 pages
http://dx.doi.org/10.1155/2012/875383
Research Article

Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

1Centro de Biotecnologia, Instituto Butantan, Avenue Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
2Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
3Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, 055508-000 São Paulo, SP, Brazil
4Laboratório de Biofármacos em Células Animais, Instituto Butantan, Avenue Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
5Laboratório Especial de Toxinologia Aplicada, CAT-cepid, Instituto Butantan, Avenue Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil

Received 9 March 2012; Revised 30 June 2012; Accepted 19 July 2012

Academic Editor: D. M. Clarke

Copyright © 2012 Juliana Branco Novo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Erickson, E. I. Ginns, and J. A. Barranger, “Biosynthesis of the lysosomal enzyme glucocerebrosidase,” The Journal of Biological Chemistry, vol. 260, no. 26, pp. 14319–14324, 1985. View at Google Scholar · View at Scopus
  2. E. Beutler, “Gaucher disease: new molecular approaches to diagnosis and treatment,” Science, vol. 256, no. 5058, pp. 794–799, 1992. View at Google Scholar · View at Scopus
  3. R. O. Brady, J. N. Kanfer, and D. Shapiro, “Metabolism of glucocerebrosides II. Evidence of an enzymatic deficiency in Gaucher's disease,” Biochemical and Biophysical Research Communications, vol. 18, no. 2, pp. 221–225, 1965. View at Google Scholar · View at Scopus
  4. M. Jmoudiak and A. H. Futerman, “Gaucher disease: pathological mechanisms and modern management,” British Journal of Haematology, vol. 129, no. 2, pp. 178–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Elstein and A. Zimran, “Review of the safety and efficacy of imiglucerase treatment of Gaucher disease,” Biologics, vol. 3, pp. 407–417, 2009. View at Google Scholar
  6. G. A. Grabowski, “Recent clinical progress in Gaucher disease,” Current Opinion in Pediatrics, vol. 17, no. 4, pp. 519–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Barranger and E. O'Rourke, “Lessons learned from the development of enzyme therapy for Gaucher disease,” Journal of Inherited Metabolic Disease, vol. 24, no. 2, supplement, pp. 89–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Grabowski, “Phenotype, diagnosis, and treatment of Gaucher's disease,” The Lancet, vol. 372, no. 9645, pp. 1263–1271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Beutler, “Enzyme replacement in Gaucher disease,” PLoS Medicine, vol. 1, article e21, pp. 118–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. O. Brady, P. G. Pentchev, and A. E. Gal, “Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher's disease,” The New England Journal of Medicine, vol. 291, no. 19, pp. 989–993, 1974. View at Google Scholar · View at Scopus
  11. Y. Kacher, B. Brumshtein, S. Boldin-Adamsky et al., “Acid β-glucosidase: onsights from structural analysis and relevance to Gaucher disease therapy,” Biological Chemistry, vol. 389, no. 11, pp. 1361–1369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Starzyk, S. Richards, J. Yee, S. E. Smith, and W. Kingma, “The long-term international safety experience of imiglucerase therapy for Gaucher disease,” Molecular Genetics and Metabolism, vol. 90, no. 2, pp. 157–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. B. Deegan and T. M. Cox, “Imiglucerase in the treatment of Gaucher disease: a history and perspective,” Drug Design, Development and Therapy, vol. 6, pp. 81–106, 2012. View at Google Scholar
  14. T. M. Cox, “Gaucher disease: clinical profile and therapeutic developments,” Biologics, vol. 4, pp. 299–313, 2011. View at Google Scholar
  15. J. M. F. G. Aerts, U. Yasothan, and P. Kirkpatrick, “Velaglucerase alfa,” Nature Reviews Drug Discovery, vol. 9, no. 11, pp. 837–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Traynor, “Taliglucerase alfa approved for Gaucher disease,” American Journal of Health-System Pharmacy, vol. 69, no. 12, p. 1009, 2012. View at Google Scholar
  17. B. Brumshtein, P. Salinas, B. Peterson et al., “Characterization of gene-activated human acid-β-glucosidase: crystal structure, glycan composition, and internalization into macrophages,” Glycobiology, vol. 20, no. 1, pp. 24–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. L. Morris, “Velaglucerase alfa for the management of type 1 Gaucher disease,” Clinical Therapeutics, vol. 34, pp. 259–271, 2012. View at Publisher · View at Google Scholar
  19. A. Zimran, K. Loveday, C. Fratazzi, and D. Elstein, “A pharmacokinetic analysis of a novel enzyme replacement therapy with Gene-Activated human glucocerebrosidase (GA-GCB) in patients with type 1 Gaucher disease,” Blood Cells, Molecules, and Diseases, vol. 39, no. 1, pp. 115–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. E. Hollak, “An evidence-based review of the potential benefits of taliglucerase alfa in the treatment of patients with Gaucher disease,” Core Evidence, vol. 7, pp. 15–20, 2012. View at Google Scholar
  21. Y. Shaaltiel, D. Bartfeld, S. Hashmueli et al., “Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system,” Plant Biotechnology Journal, vol. 5, no. 5, pp. 579–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. E. M. Hollak, S. vom Dahl, J. M. F. G. Aerts et al., “Force Majeure: therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease,” Blood Cells, Molecules, and Diseases, vol. 44, no. 1, pp. 41–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Beutler, “Gaucher disease as a paradigm of current issues regarding single gene mutations of humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5384–5390, 1993. View at Google Scholar · View at Scopus
  24. E. Beutler, “Lysosomal storage diseases: natural history and ethical and economic aspects,” Molecular Genetics and Metabolism, vol. 88, no. 3, pp. 208–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. H. Futerman, J. L. Sussman, M. Horowitz, I. Silman, and A. Zimran, “New directions in the treatment of Gaucher disease,” Trends in Pharmacological Sciences, vol. 25, no. 3, pp. 147–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. Kaufman, M. V. Davies, L. C. Wasley, and D. Michnick, “Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus,” Nucleic Acids Research, vol. 19, no. 16, pp. 4485–4490, 1991. View at Google Scholar · View at Scopus
  27. G. Urlaub and L. A. Chasin, “Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 7, pp. 4216–4220, 1980. View at Google Scholar · View at Scopus
  28. J. J. Cacciatore, L. A. Chasin, and E. F. Leonard, “Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system,” Biotechnology Advances, vol. 28, no. 6, pp. 673–681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. Kaufman, “Selection and coamplification of heterologous genes in mammalian cells,” Methods in Enzymology, vol. 185, pp. 537–566, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. K. P. Jayapal, K. F. Wlaschin, W. S. Hu, and M. G. S. Yap, “Recombinant protein therapeutics from CHO Cells—20 years and counting,” Chemical Engineering Progress, vol. 103, no. 10, pp. 40–47, 2007. View at Google Scholar · View at Scopus
  31. F. M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells,” Nature Biotechnology, vol. 22, no. 11, pp. 1393–1398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Google Scholar · View at Scopus
  33. F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology, vol. 52, no. 2, pp. 456–467, 1973. View at Google Scholar · View at Scopus
  34. J. B. Novo, M. L. S. Oliveira, G. S. Magalhães, L. Morganti, I. Raw, and P. L. Ho, “Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in escherichia coli,” Molecular Biotechnology, vol. 46, no. 3, pp. 279–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. M. Stoscheck, “Quantitation of protein,” Methods in Enzymology, vol. 182, pp. 50–68, 1990. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Bergmann and G. A. Grabowski, “Posttranslational processing of human lysosomal acid β-glucosidase: a continuum of defects in Gaucher disease type 1 and type 2 fibroblasts,” American Journal of Human Genetics, vol. 44, no. 5, pp. 741–750, 1989. View at Google Scholar · View at Scopus
  37. T. Leonova and G. A. Grabowski, “Fate and sorting of acid β-glucosidase in transgenic mammalian cells,” Molecular Genetics and Metabolism, vol. 70, no. 4, pp. 281–294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Beck, “Therapy for lysosomal storage disorders,” IUBMB Life, vol. 62, no. 1, pp. 33–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Berg-Fussman, M. E. Grace, Y. Ioannou, and G. A. Grabowski, “Human acid β-glucosidase. N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity,” The Journal of Biological Chemistry, vol. 268, no. 20, pp. 14861–14866, 1993. View at Google Scholar · View at Scopus
  40. M. E. Grace and G. A. Grabowski, “Human acid β-glucosidase: glycosylation is required for catalytic activity,” Biochemical and Biophysical Research Communications, vol. 168, no. 2, pp. 771–777, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Brooks, “Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system,” Applied Biochemistry and Biotechnology—Part B, vol. 28, no. 3, pp. 241–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Durocher and M. Butler, “Expression systems for therapeutic glycoprotein production,” Current Opinion in Biotechnology, vol. 20, no. 6, pp. 700–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Walsh, “Post-translational modifications of protein biopharmaceuticals,” Drug Discovery Today, vol. 15, no. 17-18, pp. 773–780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Rasmussen, G. Barsomian, and M. Bergh, “Enzymatically active recombinant glucocerebrosidase,” US Patent, 5, 236, 838, 1993.
  45. R. M. Chura-Chambi, P. H. Tornieri, P. J. Spencer, P. A. Nascimento, M. B. Mathor, and L. Morganti, “High-level synthesis of recombinant murine endostatin in Chinese hamster ovary cells,” Protein Expression and Purification, vol. 35, no. 1, pp. 11–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. N. Peroni, C. R. J. Soares, E. Gimbo, L. Morganti, M. T. C. P. Ribela, and P. Bartolini, “High-level expression of human thyroid-stimulating hormone in Chinese hamster ovary cells by co-transfection of dicistronic expression vectors followed by a dual-marker amplification strategy,” Biotechnology and Applied Biochemistry, vol. 35, no. 1, pp. 19–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. C. R. J. Soares, L. Morganti, B. Miloux, J. H. Lupker, P. Ferrara, and P. Bartolini, “High-level synthesis of human prolactin in Chinese-hamster ovary cells,” Biotechnology and Applied Biochemistry, vol. 32, no. 2, pp. 127–135, 2000. View at Google Scholar · View at Scopus
  48. D. Kuystermans, B. Krampe, H. Swiderek, and M. Al-Rubeai, “Using cell engineering and omic tools for the improvement of cell culture processes,” Cytotechnology, vol. 53, no. 1–3, pp. 3–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. L. Hacker, M. De Jesus, and F. M. Wurm, “25years of recombinant proteins from reactor-grown cells—where do we go from here?” Biotechnology Advances, vol. 27, no. 6, pp. 1023–1027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. M. Browne and M. Al-Rubeai, “Selection methods for high-producing mammalian cell lines,” Trends in Biotechnology, vol. 25, no. 9, pp. 425–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Takasaki, G. J. Murray, and F. S. Furbish, “Structure of the N-asparagine-linked oligosaccharide units of human placental β-glucocerebrosidase,” The Journal of Biological Chemistry, vol. 259, no. 16, pp. 10112–10117, 1984. View at Google Scholar · View at Scopus
  52. S. M. Van Patten, H. Hughes, M. R. Huff et al., “Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease,” Glycobiology, vol. 17, no. 5, pp. 467–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Friedman and M. Hayes, “Enhanced in vivo uptake of glucocerebrosidase,” US Patent, 5, 549, 892, 1996.
  54. F. S. Furbish, C. J. Steer, N. L. Krett, and J. A. Barranger, “Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation,” Biochimica et Biophysica Acta, vol. 673, no. 4, pp. 425–434, 1981. View at Google Scholar · View at Scopus
  55. C. H. Fann, F. Guirgis, G. Chen, M. S. Lao, and J. M. Piret, “Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells,” Biotechnology and Bioengineering, vol. 69, no. 2, pp. 204–212, 2000. View at Google Scholar · View at Scopus
  56. N. S. Kim, S. J. Kim, and G. M. Lee, “Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure,” Biotechnology and Bioengineering, vol. 60, pp. 679–688, 1998. View at Google Scholar
  57. J. Chusainow, Y. S. Yang, J. H. M. Yeo et al., “A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?” Biotechnology and Bioengineering, vol. 102, no. 4, pp. 1182–1196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. B. Gu, J. A. Kern, P. Todd, and D. S. Kompala, “Effect of amplification of dhfr and lac Z genes on growth and β-galactosidase expression in suspension cultures of recombinant CHO cells,” Cytotechnology, vol. 9, no. 1–3, pp. 237–245, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Hoppe, “Cerezyme—recombinant protein treatment for Gaucher's disease,” Journal of Biotechnology, vol. 76, no. 2-3, pp. 259–261, 2000. View at Google Scholar · View at Scopus