Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 959848, 10 pages
http://dx.doi.org/10.1155/2012/959848
Review Article

Ectonucleotidases in Tumor Cells and Tumor-Associated Immune Cells: An Overview

1Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
2Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, 96010-610 Pelotas, RS, Brazil
3Instituto de Pesquisas Biomédicas and Faculdade de Biociências, PUCRS, 90619-900 Porto Alegre, RS, Brazil
4Departamento de Patologia, Hospital de Clínicas de Porto Alegre, UFRGS, 90035-000 Porto Alegre, RS, Brazil

Received 17 May 2012; Accepted 4 July 2012

Academic Editor: John Stagg

Copyright © 2012 Letícia Scussel Bergamin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Increasing evidence points out that genetic alteration does not guarantee the development of a tumor and indicates that complex interactions of tumor cells with the microenvironment are fundamental to tumorigenesis. Among the pathological alterations that give tumor cells invasive potential, disruption of inflammatory response and the purinergic signaling are emerging as an important component of cancer progression. Nucleotide/nucleoside receptor-mediated cell communication is orchestrated by ectonucleotidases, which efficiently hydrolyze ATP, ADP, and AMP to adenosine. ATP can act as danger signaling whereas adenosine, acts as a negative feedback mechanism to limit inflammation. Many tumors exhibit alterations in ATP-metabolizing enzymes, which may contribute to the pathological events observed in solid cancer. In this paper, the main changes occurring in the expression and activity of ectonucleotidases in tumor cells as well as in tumor-associated immune cells are discussed. Furthermore, we focus on the understanding of the purinergic signaling primarily as exemplified by research done by the group on gliomas.