Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 959848, 10 pages
http://dx.doi.org/10.1155/2012/959848
Review Article

Ectonucleotidases in Tumor Cells and Tumor-Associated Immune Cells: An Overview

1Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
2Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, 96010-610 Pelotas, RS, Brazil
3Instituto de Pesquisas Biomédicas and Faculdade de Biociências, PUCRS, 90619-900 Porto Alegre, RS, Brazil
4Departamento de Patologia, Hospital de Clínicas de Porto Alegre, UFRGS, 90035-000 Porto Alegre, RS, Brazil

Received 17 May 2012; Accepted 4 July 2012

Academic Editor: John Stagg

Copyright © 2012 Letícia Scussel Bergamin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Zimmermann, M. Zebisch, and N. Sträter, “Cellular function and molecular structure of ecto-nucleotidases,” Purinergic Signalling, vol. 8, no. 3, pp. 437–502, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Robson, J. Sévigny, and H. Zimmermann, “The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance,” Purinergic Signalling, vol. 2, no. 2, pp. 409–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Plesner, “Ecto-ATPases: identities and functions,” International Review of Cytology, vol. 158, pp. 141–214, 1995. View at Google Scholar · View at Scopus
  4. F. Bigonnesse, S. A. Lévesque, F. Kukulski et al., “Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8,” Biochemistry, vol. 43, no. 18, pp. 5511–5519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. P. Chadwick and A. M. Frischauf, “The CD39-like gene family: identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster,” Genomics, vol. 50, no. 3, pp. 357–367, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Heine, N. Braun, A. Heilbronn, and H. Zimmermann, “Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells,” European Journal of Biochemistry, vol. 262, no. 1, pp. 102–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Kaczmarek, K. Koziak, J. Sévigny et al., “Identification and characterization of CD39/vascular ATP diphosphohydrolase,” The Journal of Biological Chemistry, vol. 271, no. 51, pp. 33116–33122, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Kegel, N. Braun, P. Heine, C. R. Maliszewski, and H. Zimmermann, “An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain,” Neuropharmacology, vol. 36, no. 9, pp. 1189–1200, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. T. M. Smith and T. L. Kirley, “Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases,” Biochimica et Biophysica Acta, vol. 1386, no. 1, pp. 65–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zimmermann, “Extracellular metabolism of ATP and other nucleotides,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 362, no. 4-5, pp. 299–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bollen, R. Gijsbers, H. Ceulemans, W. Stalmans, and C. Stefan, “Nucleotide pyrophosphatases/phosphodiesterases on the move,” Critical Reviews in Biochemistry and Molecular Biology, vol. 35, no. 6, pp. 393–432, 2000. View at Google Scholar · View at Scopus
  12. J. W. Goding, B. Grobben, and H. Slegers, “Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family,” Biochimica et Biophysica Acta, vol. 1638, no. 1, pp. 1–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zimmermann, “5-Nucleotidase: molecular structure and functional aspects,” Biochemical Journal, vol. 285, no. 2, pp. 345–365, 1992. View at Google Scholar · View at Scopus
  14. R. Sadej, J. Spychala, and A. C. Skladanowski, “Expression of ecto-5-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma,” Melanoma Research, vol. 16, no. 3, pp. 213–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Sadej, K. Inai, Z. Rajfur et al., “Tenascin C interacts with Ecto-5-nucleotidase (eN) and regulates adenosine generation in cancer cells,” Biochimica et Biophysica Acta, vol. 1782, no. 1, pp. 35–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Zhou, X. Zhi, T. Zhou et al., “Overexpression of ecto-5-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix,” Cancer Biology and Therapy, vol. 6, no. 3, pp. 426–431, 2007. View at Google Scholar · View at Scopus
  17. M. J. L. Bours, E. L. R. Swennen, F. Di Virgilio, B. N. Cronstein, and P. C. Dagnelie, “Adenosine 5-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation,” Pharmacology and Therapeutics, vol. 112, no. 2, pp. 358–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Coutinho-Silva, J. L. Perfettini, P. M. Persechini, A. Dautry-Varsat, and D. M. Ojcius, “Modulation of P2Z/P2X7 receptor activity in macrophages infected with Chlamydia psittaci,” American Journal of Physiology, vol. 280, no. 1, pp. C81–C89, 2001. View at Google Scholar · View at Scopus
  19. D. Perregaux and C. A. Gabel, “Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity,” The Journal of Biological Chemistry, vol. 269, no. 21, pp. 15195–15203, 1994. View at Google Scholar · View at Scopus
  20. S. Deaglio and S. C. Robson, “Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation and immunity,” Advances in Pharmacology, vol. 61, pp. 301–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Maliszewski, G. J. T. Delespesse, M. A. Schoenborn et al., “The CD39 lymphoid cell activation antigen: molecular cloning and structural characterization,” The Journal of Immunology, vol. 153, no. 8, pp. 3574–3583, 1994. View at Google Scholar · View at Scopus
  22. K. Koziak, J. Sévigny, S. C. Robson, J. B. Siegel, and E. Kaczmarek, “Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes,” Thrombosis and Haemostasis, vol. 82, no. 5, pp. 1538–1544, 1999. View at Google Scholar · View at Scopus
  23. V. Kumar and A. Sharma, “Adenosine: an endogenous modulator of innate immune system with therapeutic potential,” European Journal of Pharmacology, vol. 616, no. 1–3, pp. 7–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. Zanin, E. Braganhol, L. S. Bergamin et al., “Differential macrophage activation alters the expression profile of NTPDase and Ecto-5-nucleotidase,” PLoS ONE, vol. 7, no. 2, Article ID e31205, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Kukulski, F. Bahrami, F. Ben Yebdri et al., “NTPDase1 controls IL-8 production by human neutrophils,” The Journal of Immunology, vol. 187, no. 2, pp. 644–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Lévesque, F. Kukulski, K. Enjyoji, S. C. Robson, and J. Sévigny, “NTPDase1 governs P2X7-dependent functions in murine macrophages,” European Journal of Immunology, vol. 40, no. 5, pp. 1473–1485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. E. Dombrowski, J. M. Trevillyan, J. C. Cone, Y. Lu, and C. A. Phillips, “Identification and partial characterization of an EctoATPase expressed by human natural killer cells,” Biochemistry, vol. 32, no. 26, pp. 6515–6522, 1993. View at Google Scholar · View at Scopus
  28. K. E. Dombrowski, Y. Ke, L. F. Thompson, and J. A. Kapp, “Antigen recognition by CTL is dependent upon ectoATPase activity,” The Journal of Immunology, vol. 154, no. 12, pp. 6227–6237, 1995. View at Google Scholar · View at Scopus
  29. K. E. Dombrowski, J. C. Cone, J. M. Bjorndahl, and C. A. Phillips, “Irreversible inhibition of human natural killer cell natural cytotoxicity by modification of the extracellular membrane by the adenine nucleotide analog 5'-p-(fluorosulfonyl)benzoyl adenosine,” Cellular Immunology, vol. 160, no. 2, pp. 199–204, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. H. P. Langston, Y. Ke, A. T. Gewirtz, K. E. Dombrowski, and J. A. Kapp, “Secretion of IL-2 and IFN-γ, but not IL-4, by antigen-specific T cells requires extracellular ATP,” The Journal of Immunology, vol. 170, no. 6, pp. 2962–2970, 2003. View at Google Scholar · View at Scopus
  31. H. Tsukamoto, P. Chernogorova, K. Ayata et al., “Deficiency of CD73/ecto-5-nucleotidase in mice enhances acute graft-versus-host disease,” Blood, vol. 119, no. 19, pp. 4554–4564, 2012. View at Google Scholar · View at Scopus
  32. M. Mandapathil, M. J. Szczepanski, M. Szajnik et al., “Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer,” Clinical Cancer Research, vol. 15, no. 20, pp. 6348–6357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Borsellino, M. Kleinewietfeld, D. Di Mitri et al., “Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression,” Blood, vol. 110, no. 4, pp. 1225–1232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Deaglio, K. M. Dwyer, W. Gao et al., “Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1257–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Miyara and S. Sakaguchi, “Natural regulatory T cells: mechanisms of suppression,” Trends in Molecular Medicine, vol. 13, no. 3, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. T. L. Whiteside, M. Mandapathil, and P. Schuler, “The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg),” Current Medicinal Chemistry, vol. 18, no. 34, pp. 5217–5223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. V. Sauer, I. Brigida, N. Carriglio et al., “Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID,” Blood, vol. 119, no. 6, pp. 1428–1439, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Tang, L. Jiang, Y. Zheng, B. Ni, and Y. Wu, “Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection,” BMC Immunology, vol. 13, article 17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Loza, A. Shane Anderson, K. S. O'Rourke, J. Wood, and I. U. Khan, “T-cell specific defect in expression of the NTPDase CD39 as a biomarker for lupus,” Cellular Immunology, vol. 271, no. 1, pp. 110–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. C. Hyman, D. Petrovic-Djergovic, S. H. Visovatti et al., “Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39,” The Journal of Clinical Investigation, vol. 119, no. 5, pp. 1136–1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Pelegrin and A. Surprenant, “Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates,” The EMBO Journal, vol. 28, no. 14, pp. 2114–2127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. La Sala, D. Ferrari, S. Corinti, A. Cavani, F. Di Virgilio, and G. Girolomoni, “Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses,” The Journal of Immunology, vol. 166, no. 3, pp. 1611–1617, 2001. View at Google Scholar · View at Scopus
  43. N. Mizumoto, T. Kumamoto, S. C. Robson et al., “CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness,” Nature Medicine, vol. 8, no. 4, pp. 358–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Corriden, Y. Chen, Y. Inoue et al., “Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine,” The Journal of Biological Chemistry, vol. 283, no. 42, pp. 28480–28486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. N. Louis, “The p53 gene and protein in human brain tumors,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 1, pp. 11–21, 1994. View at Google Scholar · View at Scopus
  46. A. von Deimling, D. N. Louis, and O. D. Wiestler, “Molecular pathways in the formation of gliomas,” Glia, vol. 15, no. 3, pp. 328–338, 1995. View at Google Scholar · View at Scopus
  47. E. A. Maher, F. B. Furnari, R. M. Bachoo et al., “Malignant glioma: genetics and biology of a grave matter,” Genes and Development, vol. 15, no. 11, pp. 1311–1333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. J. R. Shapiro, “Genetics of brain neoplasms,” Current Neurology and Neuroscience Reports, vol. 1, no. 3, pp. 217–224, 2001. View at Google Scholar · View at Scopus
  49. A. Mantovani, “Cancer: inflaming metastasis,” Nature, vol. 457, no. 7225, pp. 36–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Takano, J. H. C. Lin, G. Arcuino, Q. Gao, J. Yang, and M. Nedergaard, “Glutamate release promotes growth of malignant gliomas,” Nature Medicine, vol. 7, no. 9, pp. 1010–1015, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Pellegatti, L. Raffaghello, G. Bianchi, F. Piccardi, V. Pistoia, and F. Di Virgilio, “Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase,” PLoS ONE, vol. 3, no. 7, Article ID e2599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Melani, E. De Micheli, G. Pinna, A. Alfieri, L. D. Corte, and F. Pedata, “Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study,” Neuroscience Letters, vol. 346, no. 1-2, pp. 93–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Ryu, H. B. Choi, K. Hatori et al., “Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase,” Journal of Neuroscience Research, vol. 72, no. 3, pp. 352–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Lenz, C. Gottfried, L. Zhijun et al., “P(2Y) purinoceptor subtypes recruit different Mek activators in astrocytes,” British Journal of Pharmacology, vol. 129, no. 5, pp. 927–936, 2000. View at Google Scholar · View at Scopus
  55. J. T. Neary, Y. Kang, K. A. Willoughby, and E. F. Ellis, “Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors,” Journal of Neuroscience, vol. 23, no. 6, pp. 2348–2356, 2003. View at Google Scholar · View at Scopus
  56. J. Spychala, “Tumor-promoting functions of adenosine,” Pharmacology and Therapeutics, vol. 87, no. 2-3, pp. 161–173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Ohta, E. Gorelik, S. J. Prasad et al., “A2A adenosine receptor protects tumors from antitumor T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13132–13137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. E. R. Lazarowski, R. C. Boucher, and T. K. Harden, “Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations,” The Journal of Biological Chemistry, vol. 275, no. 40, pp. 31061–31068, 2000. View at Google Scholar · View at Scopus
  59. M. P. Abbracchio, G. Burnstock, J. M. Boeynaems et al., “International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy,” Pharmacological Reviews, vol. 58, no. 3, pp. 281–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. S. F. Okada, R. A. Nicholas, S. M. Kreda, E. R. Lazarowski, and R. C. Boucher, “Physiological regulation of ATP release at the apical surface of human airway epithelia,” The Journal of Biological Chemistry, vol. 281, no. 32, pp. 22992–23002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Burnstock, “Purinergic signalling: its unpopular beginning, its acceptance and its exciting future,” BioEssays, vol. 34, no. 3, pp. 218–225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. S. F. M. Häusler, I. Montalbán del Barrio, J. Strohschein et al., “Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity,” Cancer Immunology, Immunotherapy, vol. 60, no. 10, pp. 1405–1418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Buffon, M. R. Wink, B. V. Ribeiro et al., “NTPDase and 5 ecto-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor,” Biochimica et Biophysica Acta, vol. 1770, no. 8, pp. 1259–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. K. N. Dzhandzhugazyan, A. F. Kirkin, P. Thor Straten, and J. Zeuthen, “Ecto-ATP diphosphohydrolase/CD39 is overexpressed in differentiated human melanomas,” FEBS Letters, vol. 430, no. 3, pp. 227–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. B. M. Künzli, M. I. Bernlochner, S. Rath et al., “Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer,” Purinergic Signalling, vol. 7, no. 2, pp. 231–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. F. B. Morrone, D. L. Oliveira, P. Gamermann et al., “In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model,” BMC Cancer, vol. 6, article 226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Stella, L. Bavaresco, E. Braganhol et al., “Differential ectonucleotidase expression in human bladder cancer cell lines,” Urologic Oncology, vol. 28, no. 3, pp. 260–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. W. Jackson, T. Hoshi, Y. Wu et al., “Disordered purinergic signaling inhibits pathological angiogenesis in Cd39/Entpd1-null mice,” American Journal of Pathology, vol. 171, no. 4, pp. 1395–1404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Sun, Y. Wu, W. Gao et al., “CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice,” Gastroenterology, vol. 139, no. 3, pp. 1030–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Feng, X. Sun, E. Csizmadia et al., “Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate,” Neoplasia, vol. 13, no. 3, pp. 206–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. P. Hilchey, J. J. Kobie, M. R. Cochran et al., “Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness,” The Journal of Immunology, vol. 183, no. 10, pp. 6157–6166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Jin, J. Fan, L. Wang et al., “CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression,” Cancer Research, vol. 70, no. 6, pp. 2245–2255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Wang, J. Fan, L. F. Thompson et al., “CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice,” The Journal of Clinical Investigation, vol. 121, no. 6, pp. 2371–2382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Bavaresco, A. Bernardi, E. Braganhol et al., “The role of ecto-5-nucleotidase/CD73 in glioma cell line proliferation,” Molecular and Cellular Biochemistry, vol. 319, no. 1-2, pp. 61–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Sadej, J. Spychala, and A. C. Skladanowski, “Expression of ecto-55-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma,” Melanoma Research, vol. 16, no. 3, pp. 213–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Y. Cho, J. Polster, J. M. Engles, J. Hilton, E. H. Abraham, and R. L. Wahl, “In vitro evaluation of adenosine 5-monophosphate as an imaging agent of tumor metabolism,” Journal of Nuclear Medicine, vol. 47, no. 5, pp. 837–845, 2006. View at Google Scholar · View at Scopus
  77. T. Kondo, T. Nakazawa, S. I. Murata, and R. Katoh, “Expression of CD73 and its ecto-5-nucleotidase activity are elevated in papillary thyroid carcinomas,” Histopathology, vol. 48, no. 5, pp. 612–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Fukuda, C. Sakakura, K. Miyagawa et al., “Differential gene expression profiles of radio resistant oesophageal cancer cell lines established by continuous fractionated irradiation,” British Journal of Cancer, vol. 91, no. 8, pp. 1543–1550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Hastie, M. Saxton, A. Akpan, R. Cramer, J. R. Masters, and S. Naaby-Hansen, “Combined affinity labelling and mass spectrometry analysis of differential cell surface protein expression in normal and prostate cancer cells,” Oncogene, vol. 24, no. 38, pp. 5905–5913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Spychala, E. Lazarowski, A. Ostapkowicz, L. H. Ayscue, A. Jin, and B. S. Mitchell, “Role of estrogen receptor in the regulation of ecto-5-nucleotidase and adenosine in breast cancer,” Clinical Cancer Research, vol. 10, no. 2, pp. 708–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Wang, X. Zhou, T. Zhou et al., “Ecto-5-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 3, pp. 365–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Singh Ghalaut, K. Dahiya, P. S. Ghalaut, S. Batra, and R. Dhankhar, “Lymphocytic ecto 5-nucleotidase (ecto-5NT) levels in acute lymphoblastic leukemia and non-Hodgkin's lymphoma,” Clinica Chimica Acta, vol. 364, no. 1-2, pp. 359–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Stagg, U. Divisekera, N. McLaughlin et al., “Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1547–1552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. X. Zhi, S. Chen, P. Zhou et al., “RNA interference of ecto-5-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion,” Clinical and Experimental Metastasis, vol. 24, no. 6, pp. 439–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. G. G. Yegutkin, F. Marttila-Ichihara, M. Karikoski et al., “Altered purinergic signaling in CD73-deficient mice inhibits tumor progression,” European Journal of Immunology, vol. 41, no. 5, pp. 1231–1241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Stagg, U. Divisekera, H. Duret et al., “CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis,” Cancer Research, vol. 71, no. 8, pp. 2892–2900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Stagg, P. A. Beavis, U. Divisekera et al., “CD73-Deficient mice are resistant to carcinogenesis,” Cancer Research, vol. 72, no. 9, pp. 2190–2196, 2012. View at Google Scholar · View at Scopus
  88. F. B. Morrone, M. C. Jacques-Silva, A. P. Horn et al., “Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines,” Journal of Neuro-Oncology, vol. 64, no. 3, pp. 211–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. F. B. Morrone, A. P. Horn, J. Stella et al., “Increased resistance of glioma cell lines to extracellular ATP cytotoxicity,” Journal of Neuro-Oncology, vol. 71, no. 2, pp. 135–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Amadio, N. D'Ambrosi, F. Cavaliere et al., “P2 receptor modulation and cytotoxic function in cultured CNS neurons,” Neuropharmacology, vol. 42, no. 4, pp. 489–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M. R. Wink, G. Lenz, E. Braganhol et al., “Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines,” Cancer Letters, vol. 198, no. 2, pp. 211–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Braganhol, F. B. Morrone, A. Bernardi et al., “Selective NTPDase2 expression modulates in vivo rat glioma growth,” Cancer Science, vol. 100, no. 8, pp. 1434–1442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. E. Braganhol, R. F. Zanin, A. Bernardi et al., “Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury,” Purinergic Signalling, vol. 8, no. 2, pp. 235–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Grobben, K. Anciaux, D. Roymans et al., “An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma,” Journal of Neurochemistry, vol. 72, no. 2, pp. 826–834, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Aerts, J. J. Martin, P. P. D. Deyn et al., “The expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (E-NPP1) is correlated with astrocytic tumor grade,” Clinical Neurology and Neurosurgery, vol. 113, no. 3, pp. 224–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Komohara, K. Ohnishi, J. Kuratsu, and M. Takeya, “Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas,” Journal of Pathology, vol. 216, no. 1, pp. 15–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Mora, A. Abschuetz, T. Kees et al., “TNF-α- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia,” Glia, vol. 57, no. 5, pp. 561–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. J. J. Watters, J. M. Schartner, and B. Badie, “Microglia function in brain tumors,” Journal of Neuroscience Research, vol. 81, no. 3, pp. 447–455, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Jantaratnotai, H. B. Choi, and J. G. McLarnon, “ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells,” BMC Cancer, vol. 9, article 442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Sica and V. Bronte, “Altered macrophage differentiation and immune dysfunction in tumor development,” The Journal of Clinical Investigation, vol. 117, no. 5, pp. 1155–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Solinas, G. Germano, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1065–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. N. Sanai, A. Alvarez-Buylla, and M. S. Berger, “Mechanisms of disease: neural stem cells and the origin of gliomas,” The New England Journal of Medicine, vol. 353, no. 8, pp. 811–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. S. K. Singh, I. D. Clarke, T. Hide, and P. B. Dirks, “Cancer stem cells in nervous system tumors,” Oncogene, vol. 23, no. 43, pp. 7267–7273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Ohkubo, K. Nagata, and N. Nakahata, “Adenosine uptake-dependent C6 cell growth inhibition,” European Journal of Pharmacology, vol. 577, no. 1–3, pp. 35–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Zhang, “CD73 promotes tumor growth and metastasis,” Oncoimmunology, vol. 1, no. 1, pp. 67–70, 2012. View at Google Scholar
  108. S. Gessi, V. Sacchetto, E. Fogli et al., “Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors,” Biochemical Pharmacology, vol. 79, no. 10, pp. 1483–1495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. A. R. Cappellari, G. J. Vasques, L. Bavaresco, E. Braganhol, and A. M. O. Battastini, “Involvement of ecto-5-nucleotidase/CD73 in U138MG glioma cell adhesion,” Molecular and Cellular Biochemistry, vol. 359, no. 1-2, pp. 315–322, 2012. View at Publisher · View at Google Scholar · View at Scopus