Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 982971, 10 pages
Review Article

Engineering Airway Epithelium

1Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada M5G 2C4
2University of Toronto, Toronto, ON, Canada M5S 1A1
3Department of Chemical Engineering, University of Toronto, Toronto, ON, Canada M5S 1A1
4Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 1A1

Received 2 August 2011; Revised 28 October 2011; Accepted 30 October 2011

Academic Editor: Susan A. Rotenberg

Copyright © 2012 John P. Soleas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.