Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 136590, 9 pages
Research Article

In Vitro Release Kinetics of Antituberculosis Drugs from Nanoparticles Assessed Using a Modified Dissolution Apparatus

1Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
2Faculty of Pharmaceutical Sciences, University of Sao Paulo, 05508-000 Sao Paulo, SP, Brazil
3Merck & Co., Basic Pharmaceutical Sciences, West Point, PA 19486, USA
4Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa

Received 22 April 2013; Revised 11 June 2013; Accepted 11 June 2013

Academic Editor: Kamla Pathak

Copyright © 2013 Yuan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The aim of this study was to assess the in vitro release kinetics of antituberculosis drug-loaded nanoparticles (NPs) using a “modified” cylindrical apparatus fitted with a regenerated cellulose membrane attached to a standard dissolution apparatus (modifiedcylinder method). The model drugs that were used were rifampicin (RIF) and moxifloxacin hydrochloride (MX). Gelatin and polybutyl cyanoacrylate (PBCA) NPs were evaluated as the nanocarriers, respectively. The dissolution and release kinetics of the drugs from loaded NPs were studied in different media using the modified cylinder method and dialysis bag technique was used as the control technique. The results showed that use of the modified cylinder method resulted in different release profiles associated with unique release mechanisms for the nanocarrier systems investigated. The modified cylinder method also permitted discrimination between forced and normal in vitro release of the model drugs from gelatin NPs in the presence or absence of enzymatic degradation. The use of dialysis bag technique resulted in an inability to differentiate between the mechanisms of drug release from the NPs in these cases. This approach offers an effective tool to investigate in vitro release of RIF and MX from NPs, which further indicate that this technique can be used for performance testing of nanosized carrier systems.