Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 176946, 12 pages
http://dx.doi.org/10.1155/2013/176946
Research Article

The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility

1Department of Biopharmacy, School of Pharmacy, Medical University of Silesia, Narcyzów 1, 41-200 Sosnowiec, Poland
2Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819 Zabrze, Poland
3Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
4Department of Molecular Biology, Medical University of Silesia, Narcyzów 1, 41-200 Sosnowiec, Poland
5Department of Pediatric Surgery, Medical University of Silesia, Medyków 16, 40-752 Katowice, Poland

Received 26 April 2013; Accepted 12 July 2013

Academic Editor: Jean-Pierre Molès

Copyright © 2013 Arkadiusz Orchel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000. View at Google Scholar · View at Scopus
  2. M. Suzuki and Y. Ikada, “Biodegradable polymers in medicine,” in Biodegradable Systems in Tissue Engineering and Regenerative Medicine, R. L. Reis and J. S. Roman, Eds., pp. 3–13, CRC Press, Boca Raton, Fla, USA, 2005. View at Google Scholar
  3. C. Thies, “Formation of degradable drug loaded microparticles by in-liquid drying processes,” in Microcapsules and Nanoparticles in Medicine and Pharmacy, M. Donbrow, Ed., pp. 47–72, CRC Press, Boca Raton, Fla, USA, 1992. View at Google Scholar
  4. G. E. Wnek and G. L. Bowlin, Encyclopedia of Biomaterials and Biomedical Engineering, vol. 2, Informa Healthcare, New York, NY, USA, 2008.
  5. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, “Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers,” Biomaterials, vol. 17, no. 2, pp. 93–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Garric, J. P. Molès, H. Garreau, C. Braud, J. J. Guilhou, and M. Vert, “Growth of various cell types in the presence of lactic and glycolic acids: the adverse effect of glycolic acid released from PLAGA copolymer on keratinocyte proliferation,” Journal of Biomaterials Science, vol. 13, no. 11, pp. 1189–1201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. van Sliedregt, A. M. Radder, K. de Groot, and C. A. van Blitterswijk, “In vitro biocompatibility testing of polylactides–part I proliferation of different cell types,” Journal of Materials Science, vol. 3, no. 5, pp. 365–370, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. A. van Sliedregt, J. A. van Loon, J. van der Brink, K. de Groot, and C. A. van Blitterswijk, “Evaluation of polylactide monomers in an in vitro biocompatibility assay,” Biomaterials, vol. 15, no. 4, pp. 251–256, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Di Toro, V. Betti, and S. Spampinato, “Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-Lactide-co-glycolide) copolymers,” European Journal of Pharmaceutical Sciences, vol. 21, no. 2-3, pp. 161–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. M. Elgendy, M. E. Norman, A. R. Keaton, and C. T. Laurencin, “Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material,” Biomaterials, vol. 14, no. 4, pp. 263–269, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. S. L. Ishaug-Riley, L. E. Okun, G. Prado, M. A. Applegate, and A. Ratcliffe, “Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films,” Biomaterials, vol. 20, no. 23-24, pp. 2245–2256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Miller, A. Thapa, K. M. Haberstroh, and T. J. Webster, “Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features,” Biomaterials, vol. 25, no. 1, pp. 53–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. G. Tang, R. A. Black, J. M. Curran, J. A. Hunt, N. P. Rhodes, and D. F. Williams, “Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films,” Biomaterials, vol. 25, no. 19, pp. 4741–4748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Fabre, M. Schappacher, R. Bareille et al., “Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer–part 2: in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide,” Biomaterials, vol. 22, no. 22, pp. 2951–2958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Pêgo, B. Siebum, M. J. Van Luyn et al., “Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-Lactide (Co)polymers for heart tissue engineering,” Tissue Engineering, vol. 9, no. 5, pp. 981–994, 2003. View at Google Scholar · View at Scopus
  16. P. Dobrzynski and J. Kasperczyk, “Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of L-Lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetylacetonate,” Journal of Polymer Science A, vol. 44, no. 10, pp. 3184–3201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. F. W. Cordewener, M. F. van Geffen, C. A. Joziasse et al., “Cytotoxicity of poly(96L/4D-Lactide): the influence of degradation and sterilization,” Biomaterials, vol. 21, no. 23, pp. 2433–2442, 2000. View at Google Scholar · View at Scopus
  18. A. A. Ignatius and L. E. Claes, “In vitro biocompatibility of bioresorbable polymers: poly(L, DL-Lactide) and poly(L-Lactide-co-glycolide),” Biomaterials, vol. 17, no. 8, pp. 831–839, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Böstman, E. Hirvensalo, J. Makinen, and P. Rokkanen, “Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers,” Journal of Bone and Joint Surgery B, vol. 72, no. 4, pp. 592–596, 1990. View at Google Scholar · View at Scopus
  20. O. Böstman and H. Pihlajamäki, “Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review,” Biomaterials, vol. 21, no. 24, pp. 2615–2621, 2000. View at Google Scholar · View at Scopus
  21. A. van Sliedregt, M. Knook, S. C. Hesseling, H. K. Koerten, K. de Groot, and C. A. van Blitterswijk, “Cellular reaction on the intraperitoneal injection of four types of polyLactide particulates,” Biomaterials, vol. 13, no. 12, pp. 819–824, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Nakamura, Y. Shimizu, N. Okumura, T. Matsui, S. H. Hyon, and T. J. Shimamoto, “Tumorigenicity of poly-L-Lactide (PLLA) plates compared with medical- grade polyethylene,” Journal of Biomedical Materials Research, vol. 28, no. 1, pp. 17–25, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Nakamura, Y. Shimizu, Y. Takimoto et al., “Biodegradation and tumorigenicity of implanted plates made from a copolymer of e-caprolactone and L-Lactide in rat,” Journal of Biomedical Materials Research, vol. 42, pp. 475–484, 1998. View at Google Scholar
  24. M. Vert, G. Schwach, R. Engel, and J. Coudane, “Something new in the field of PLA/GA bioresorbable polymers?” Journal of Controlled Release, vol. 53, no. 1-3, pp. 85–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Ruckenstein and Y. Yuan, “Molten ring-open copolymerization of L-Lactide and cyclic trimethylene carbonate,” Journal of Applied Polymer Science A, vol. 69, no. 7, pp. 1429–1434, 1998. View at Google Scholar · View at Scopus
  26. G. Rokicki, “Aliphatic cyclic carbonates and spiroorthocarbonates as monomers,” Progress in Polymer Science, vol. 25, no. 2, pp. 259–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Schwach, J. Coudane, R. Engel, and M. Vert, “More about the polymerization of lactides in the presence of stannous octoate,” Journal of Polymer Science A, vol. 35, no. 16, pp. 3431–3440, 1997. View at Google Scholar · View at Scopus
  28. S. Gogolewski and P. Mainil-Varlet, “Effect of thermal treatment on sterility, molecular and mechanical properties of various polyLactides. 2. Poly(L/D-Lactide) and poly(L/DL-Lactide),” Biomaterials, vol. 18, no. 3, pp. 251–255, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Schwach, J. Coudane, R. Engel, and M. Vert, “Influence of polymerization conditions on the hydrolytic degradation of poly(DL-Lactide) polymerized in the presence of stannous octoate or zinc-metal,” Biomaterials, vol. 23, no. 4, pp. 993–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. J. Levis and N. I. Sax, Sax's Dangerous Properties of Industrial Materials, Van Nostrand Reinhold, New York, NY, USA, 8th edition, 1992.
  31. L. W. Chang, “Hippocampal lesions induced by trimethyltin in the neonatal rat brain,” Neurotoxicology, vol. 5, no. 2, pp. 205–216, 1984. View at Google Scholar · View at Scopus
  32. R. J. Webber, S. C. Dollins, M. Harris, and A. J. Hough, “Effect of alkyltins on rabbit articular and growth-plate chondrocytes in monolayer culture,” Journal of Toxicology and Environmental Health, vol. 16, no. 2, pp. 229–242, 1985. View at Google Scholar · View at Scopus
  33. J. C. P. de Mattos, F. J. S. Dantas, R. J. A. C. Bezzera, M. Bernardo-Filho, and J. B. Cabral-Neto, “Damage induced by stannous chloride in plasmid DNA,” Toxicology Letters, vol. 116, no. 1-2, pp. 159–163, 2000. View at Publisher · View at Google Scholar
  34. P. Dobrzynski, J. Kasperczyk, H. Janeczek, and M. Bero, “Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerization of glycolide with L-Lactide initiated by Zr(Acac)4,” Macromolecules, vol. 34, no. 15, pp. 5090–5098, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Dobrzynski, J. Kasperczyk, H. Janeczek, and M. Bero, “Synthesis of biodegradable glycolide/L-Lactide copolymers using iron compounds as initiators,” Polymer, vol. 43, no. 9, pp. 2595–2601, 2002. View at Google Scholar · View at Scopus
  36. P. Dobrzyński, J. Kasperczyk, K. Jelonek, M. Ryba, M. Walski, and M. Bero, “Application of the lithium and magnesium initiators for the synthesis of glycolide, Lactide, and ε-caprolactone copolymers biocompatible with brain tissue,” Journal of Biomedical Materials Research A, vol. 79, no. 4, pp. 865–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Dobrzynski, “Mechanism of ε-caprolactone polymerization and ε-caprolactone/trimethylene carbonate copolymerization carried out with Zr(Acac)4,” Polymer, vol. 48, no. 8, pp. 2263–2279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. G. LeBaron and K. A. Athanasiou, “Ex vivo synthesis of articular cartilage,” Biomaterials, vol. 21, no. 24, pp. 2575–2587, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar · View at Scopus
  40. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. View at Google Scholar · View at Scopus
  41. E. Pamula, P. Dobrzynski, B. Szot et al., “Cytocompatibility of aliphatic polyesters—in vitro study on fibroblasts and macrophages,” Journal of Biomedical Materials Research A, vol. 87, no. 2, pp. 524–535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Bačáková, E. Filová, F. Rypáček, V. Švorčík, and V. Starý, “Cell adhesion on artificial materials for tissue engineering,” Physiological Research, vol. 53, pp. S35–S45, 2004. View at Google Scholar
  43. Y. Hu, Y. He, J. Wei et al., “Hydrolytic degradation of glycolide/L-Lactide/ε-caprolactone terpolymers initiated by zirconium(IV) acetylacetonate,” Journal of Applied Polymer Science, vol. 103, no. 4, pp. 2451–2456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Kasperczyk, K. Jelonek, P. Dobrzyñski, and B. Jarz, “The influence of copolymer chain microstructure on cyclosporine a (CyA) and Sirolimus prolonged and sustained release from PLA/TMC and PLA/PCL matrices,” Journal of Controlled Release, vol. 116, no. 2, pp. e5–e6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Maciejowska, J. Kasperczyk, P. Dobrzyñski, and M. Bero, “The influence of chain microstructure on hydrolytic degradation of glycolide/Lactide copolymers used in drug delivery systems,” Journal of Controlled Release, vol. 116, no. 2, pp. e6–e8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Jaworska, J. Kasperczyk, and P. Dobrzyński, “Degradation process of bioresorbable copolyesters. Microstructure investigation by NMR and ESI-MS,” Macromolecular Symposia, vol. 253, pp. 40–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Kasperczyk, Y. Hu, J. Jaworskam, P. Dobrzynski, J. Wei, and S. Li, “Comparative study of the hydrolytic degradation of glycolide/L-Lactide/ε-caprolactone terpolymers initiated by zirconium(IV) acetylacetonate or stannous octoate,” Journal of Applied Polymer Science, vol. 107, no. 5, pp. 3258–3266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Kasperczyk, S. Li, J. Jaworska, P. Dobrzyński, and M. Vert, “Degradation of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone: a high resolution NMR and ESI-MS study,” Polymer Degradation and Stability, vol. 93, no. 5, pp. 990–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Review of Scientific Instruments, vol. 78, no. 1, Article ID 013705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Dobrzynski and J. Kasperczyk, “Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of L-Lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetylacetonate,” Journal of Polymer Science A, vol. 44, no. 10, pp. 3184–3201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Dobrzyński, S. Li, J. Kasperczyk, M. Bero, F. Gasc, and M. Vert, “Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone–part 1. Synthesis and characterization,” Biomacromolecules, vol. 6, no. 1, pp. 483–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Dobrzyński, “Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from L-Lactide, glycolide, and ε-caprolactone initiated by zirconium(IV) acetylacetonate,” Journal of Polymer Science A, vol. 40, no. 18, pp. 3129–3143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Kasperczyk, “Microstructural analysis of poly[(L,L-Lactide)-co-(glycolide)] by 1H and 13C N.M.R. spectroscopy,” Polymer, vol. 37, no. 2, pp. 201–203, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Bacáková, E. Filová, F. Rypácek, V. Svorcík, and V. Starý, “Cell adhesion on artificial materials for tissue engineering,” Physiological Research, vol. 53, pp. S35–S45, 2004. View at Google Scholar
  55. L. Bacáková, V. Starý, O. Kofronová, and V. Lisá, “Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro,” Journal of Biomedical Materials Research, vol. 54, no. 4, pp. 567–578, 2001. View at Publisher · View at Google Scholar
  56. E. Pamula, L. Bacakova, J. Buczynska et al., “The influence of aliphatic polyesters on adhesion and growth of osteoblast-like MG63 cells,” Journal of Biomaterials and Tissue Engineering, vol. 37, pp. 14–17, 2004. View at Google Scholar
  57. J. Kasperczyk, “Copolymerization of glycolide and ε-caprolactone, 1. Analysis of the copolymer microstructure by means of 1H and 13C NMR spectroscopy,” Macromolecular Chemistry and Physics, vol. 200, no. 4, pp. 903–910, 1999. View at Google Scholar · View at Scopus