Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 213972, 8 pages
Research Article

Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis

1Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi 461-713, Republic of Korea
2National Institute of Advanced Industrial Science and Technology, Biomedical Research Institute, Tsukuba 305-8566, Japan

Received 18 April 2013; Accepted 30 May 2013

Academic Editor: Andrei Surguchov

Copyright © 2013 Hyuck Joon Kwon and Yoshihiro Ohmiya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.