Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 283985, 12 pages
Research Article

Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

1Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Veterinaria, 180137 Napoli, Italy
2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
3University College London, Internal Medicine, Division of Medicine, Faculty of Medical Sciences, Gower Street, London WC1E 6BT, UK

Received 14 February 2013; Revised 3 June 2013; Accepted 18 June 2013

Academic Editor: Marcelo Palma Sircili

Copyright © 2013 Gennaro Altamura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1) and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR) causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm.