Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 317456, 11 pages
http://dx.doi.org/10.1155/2013/317456
Research Article

Gsk-3β Inhibitors Mimic the Cardioprotection Mediated by Ischemic Pre- and Postconditioning in Hypertensive Rats

1Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Buenos Aires, Argentina
2Established Investigador of CONICET, Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Buenos Aires, Argentina

Received 10 April 2013; Revised 17 June 2013; Accepted 16 September 2013

Academic Editor: Gjumrakch Aliev

Copyright © 2013 Luisa F. González Arbeláez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Friehs and P. J. Del Nido, “Increased susceptibility of hypertrophied hearts to ischemic injury,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. S678–S684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Chen, M. Azuma, K. Maeda, N. Kajimoto, and H. Higashino, “Impaired heart function and noradrenaline release after ischaemia in stroke-prone spontaneously hypertensive rats,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 9, pp. 664–670, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Yano, T. Miki, M. Tanno et al., “Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection,” Hypertension, vol. 57, no. 1, pp. 110–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Fantinelli, I. A. Pérez Núñez, L. F. González Arbeláez, G. R. Schinella, and S. M. Mosca, “Participation of mitochondrial permeability transition pore in the effects of ischemic preconditioning in hypertrophied hearts: role of NO and mitoK(ATP),” International Journal of Cardiology, vol. 166, no. 1, pp. 173–180, 2013. View at Publisher · View at Google Scholar
  5. J. C. Fantinelli and S. M. Mosca, “Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR),” Molecular and Cellular Biochemistry, vol. 296, no. 1-2, pp. 45–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Ferdinandy, R. Schulz, and G. F. Baxter, “Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning,” Pharmacological Reviews, vol. 59, no. 4, pp. 418–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Speechly-Dick, G. F. Baxter, and D. M. Yellon, “Ischemic preconditioning protects hypertrophied myocardium,” Cardiovascular Research, vol. 28, no. 7, pp. 1025–1029, 1994. View at Google Scholar · View at Scopus
  8. Z. Ebrahim, D. M. Yellon, and G. F. Baxter, “Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension,” Experimental Gerontology, vol. 42, no. 8, pp. 807–814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Dai, B. Z. Simkhovich, and R. A. Kloner, “Ischemic preconditioning maintains cardioprotection in aging normotensive and spontaneously hypertensive rats,” Experimental Gerontology, vol. 44, no. 5, pp. 344–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Penna, F. Tullio, F. Moro, A. Folino, A. Merlino, and P. Pagliaro, “Effects of a protocol of ischemic postconditioning and/or Captopril in hearts of normotensive and hypertensive rats,” Basic Research in Cardiology, vol. 105, no. 2, pp. 181–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Penna, F. Tullio, M.-G. Perrelli et al., “Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats,” Basic Research in Cardiology, vol. 106, no. 3, pp. 409–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Tsujimoto and S. Shimizu, “Role of the mitochondrial membrane permeability transition in cell death,” Apoptosis, vol. 12, no. 5, pp. 835–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Di Lisa, M. Canton, A. Carpi et al., “Mitochondrial injury and protection in ischemic pre-and postconditioning,” Antioxidants and Redox Signaling, vol. 14, no. 5, pp. 881–891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Nishino, I. G. Webb, S. M. Davidson et al., “Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse,” Circulation Research, vol. 103, no. 3, pp. 307–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Skyschally, P. van Caster, K. Boengler et al., “Ischemic postconditioning in pigs: no causal role for risk activation,” Circulation Research, vol. 104, no. 1, pp. 15–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Gomez, M. Paillard, H. Thibault, G. Derumeaux, and M. Ovize, “Inhibition of GSK3β by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion,” Circulation, vol. 117, no. 21, pp. 2761–2768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. R. Gross, A. K. Hsu, and G. J. Gross, “Delayed cardioprotection afforded by the glycogen synthase kinase 3 inhibitor SB-216763 occurs via a KATP- and MPTP-dependent mechanism at reperfusion,” The American Journal of Physiology, vol. 294, no. 3, pp. H1497–H1500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. S. Jope and G. V. W. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Juhaszova, D. B. Zorov, Y. Yaniv, H. B. Nuss, S. Wang, and S. J. Sollott, “Role of glycogen synthase kinase-3β in cardioprotection,” Circulation Research, vol. 104, no. 11, pp. 1240–1252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Nishihara, T. Miura, T. Miki et al., “Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 5, pp. 564–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. G. Pastorino, J. B. Hoek, and N. Shulga, “Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity,” Cancer Research, vol. 65, no. 22, pp. 10545–10554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Barillas, I. Friehs, H. Cao-Danh, J. F. Martinez, and P. J. del Nido, “Inhibition of glycogen synthase kinase-3β improves tolerance to ischemia in hypertrophied hearts,” Annals of Thoracic Surgery, vol. 84, no. 1, pp. 126–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Lassègue and K. K. Griendling, “Reactive oxygen species in hypertension,” The American Journal of Hypertension, vol. 17, pp. 852–860, 2004. View at Google Scholar
  24. J. M. Downey, “Free radicals and their involvement during long-term myocardial ischemia and reperfusion,” Annual Review of Physiology, vol. 52, pp. 487–504, 1990. View at Google Scholar · View at Scopus
  25. R. Quarrie, D. S. Lee, G. Steinbaugh et al., “Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production,” Journal of Surgical Research, vol. 178, pp. 8–17, 2012. View at Google Scholar
  26. H. Kin, N.-P. Wang, J. Mykytenko et al., “Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-κB translocation and TNFα release,” Shock, vol. 29, no. 6, pp. 761–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. “Guide for the Care and Use of Laboratory Animals,” NIH Publication no. 85-23, 1985.
  28. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  29. C. P. Baines, J. Zhang, G.-W. Wang et al., “Mitochondrial PKCε and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCε-MAPK interactions and differential MAPK activation in PKCε-induced cardioprotection,” Circulation Research, vol. 90, no. 4, pp. 390–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. D. Beavis, R. D. Brannan, and K. D. Garlid, “Swelling and contraction of the mitochondrial matrix. I: a structural interpretation of the relationship between light scattering and matrix volume,” Journal of Biological Chemistry, vol. 260, no. 25, pp. 13424–13433, 1985. View at Google Scholar · View at Scopus
  31. T. Miura and T. Miki, “GSK-3β, a therapeutic target for cardiomyocyte protection,” Circulation Journal, vol. 73, no. 7, pp. 1184–1192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. R. Gross, A. K. Hsu, and G. J. Gross, “Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts,” Circulation Research, vol. 94, no. 7, pp. 960–966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. N. Obame, C. Plin-Mercier, R. Assaly et al., “Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3β, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H- pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 1, pp. 252–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Zhan, C. J. Phiel, L. Spece, N. Gurvich, and P. S. Klein, “Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium: evidence for autoregulation of GSK-3,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33067–33077, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. W. J. Ryves and A. J. Harwood, “Lithium inhibits glycogen synthase kinase-3 by competition for magnesium,” Biochemical and Biophysical Research Communications, vol. 280, no. 3, pp. 720–725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Zhai, S. Sciarretta, J. Galeotti, M. Volpe, and J. Sadoshima, “Differential roles of gsk-3β during myocardial ischemia and ischemia/reperfusion,” Circulation Research, vol. 109, no. 5, pp. 502–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Pap and G. M. Cooper, “Role of glycogen synthase kinase-3 in the phosphatidylinositol 3- kinase/Akt cell survival pathway,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 19929–19932, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Zhu, J. Feng, E. Lucchinetti et al., “Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway,” Cardiovascular Research, vol. 72, no. 1, pp. 152–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Hausenloy, S.-B. Ong, and D. M. Yellon, “The mitochondrial permeability transition pore as a target for preconditioning and postconditioning,” Basic Research in Cardiology, vol. 104, no. 2, pp. 189–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Z.-Q. Jin, H.-Z. Zhou, G. Cecchini, M. O. Gray, and J. S. Karliner, “MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury,” The American Journal of Physiology, vol. 288, no. 6, pp. H2986–H2994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Terashima, T. Sato, T. Yano et al., “Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial KATP channel,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 5, pp. 762–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Miyamoto, A. N. Murphy, and J. H. Brown, “Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II,” Cell Death and Differentiation, vol. 15, no. 3, pp. 521–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Das, R. Wong, N. Rajapakse, E. Murphy, and C. Steenbergen, “Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation,” Circulation Research, vol. 103, no. 9, pp. 983–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. T. Costa and K. D. Garlid, “Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT,” The American Journal of Physiology, vol. 295, no. 2, pp. H874–H882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Leichtweis and L. L. Ji, “Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress,” Acta Physiologica Scandinavica, vol. 172, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. M. K. Slodzinski, M. A. Aon, and B. O'Rourke, “Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 5, pp. 650–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. P. Halestrap, “Mitochondria and reperfusion injury of the heart-A holey death but not beyond salvation,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 2, pp. 113–121, 2009. View at Publisher · View at Google Scholar · View at Scopus