Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 317926, 7 pages
http://dx.doi.org/10.1155/2013/317926
Research Article

Profiling of Hepatocellular Carcinoma Cell Cycle Regulating Genes Targeted by Calycosin

1Department of Blood Transfusion, General Hospital of PLA, Beijing 100853, China
2Department of Toxicology, Beijing Center for Diseases Control and Prevention, Beijing 100013, China

Received 30 July 2013; Revised 18 October 2013; Accepted 2 December 2013

Academic Editor: Wei Mike Liu

Copyright © 2013 Dongqing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Q. Wang, Y. Li, Y. P. Tian et al., “Inhibition effects of total flavonoids of astragalus on BEL-7402 cell in vitro,” Academic Journal of PLA Postgraduate Medical School, vol. 26, no. 5, pp. 331–333, 2005. View at Google Scholar
  2. D. Q. Zhang, Y. Zhuang, J. Pan et al., “Investigation of effects and mechanisms of total flavonoids of astragalus and calycosin on human erythroleukemia cells,” Oxidative Medicine and Cellular Longevity, vol. 2012, 5 pages, 2012. View at Publisher · View at Google Scholar
  3. D.-J. Xu, Q. Wu, Y. Yang, and M.-Z. Chen, “Antitumor activity of AST and its mechanism of action,” Chinese Pharmacological Bulletin, vol. 19, no. 7, pp. 823–826, 2003. View at Google Scholar · View at Scopus
  4. A. Deshpande, P. Sicinski, and P. W. Hinds, “Cyclins and cdks in development and cancer: a perspective,” Oncogene, vol. 24, no. 17, pp. 2909–2915, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Beltz, D. K. Bayer, A. L. Moss, and I. M. Simet, “Mechanisms of cancer prevention by green and black tea polyphenols,” Anti-Cancer Agents in Medicinal Chemistry, vol. 6, no. 5, pp. 389–406, 2006. View at Google Scholar · View at Scopus
  6. S. M. Meeran and S. K. Katiyar, “Cell cycle control as a basis for cancer chemoprevention through dietary agents,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2191–2202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Walle, “Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass?” Seminars in Cancer Biology, vol. 17, no. 5, pp. 354–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L.-X. Liu, H.-C. Jiang, Z.-H. Liu et al., “Gene expression profiles of hepatoma cell line BEL-7402,” Hepato-Gastroenterology, vol. 50, no. 53, pp. 1496–1501, 2003. View at Google Scholar · View at Scopus
  9. D. D. Hershko, “Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer,” Cancer, vol. 112, no. 7, pp. 1415–1424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Rodier, P. Coulombe, P.-L. Tanguay, C. Boutonnet, and S. Meloche, “Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APCCdh1 in G1 phase,” EMBO Journal, vol. 27, no. 4, pp. 679–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Song, S. J. Song, S. J. Kim, K. Nakayama, K. I. Nakayama, and D.-S. Lim, “Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition,” Oncogene, vol. 27, no. 22, pp. 3176–3185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Shields, K. Rogers-Graham, and C. J. Der, “Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways,” Journal of Biological Chemistry, vol. 277, no. 12, pp. 9790–9799, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Lawson, M. Harrison, and C. Shapland, “Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines,” Cell Motility and the Cytoskeleton, vol. 38, pp. 250–257, 1997. View at Google Scholar
  14. R. K. Prinjha, C. E. Shapland, J. J. Hsuan, N. F. Totty, I. J. Mason, and D. Lawson, “Cloning and sequencing of cDNAs encoding the actin cross-linking protein transgelin defines a new family of actin-associated proteins,” Cell Motility and the Cytoskeleton, vol. 28, no. 3, pp. 243–255, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Shapland, J. J. Hsuan, N. F. Totty, and D. Lawson, “Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein,” Journal of Cell Biology, vol. 121, no. 5, pp. 1065–1073, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Yang, Y.-J. Chang, H. Miyamoto et al., “Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth,” Molecular Endocrinology, vol. 21, no. 2, pp. 343–358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-F. Léonard, M. Courcol, C. Mariet et al., “Proteomic characterization of the effects of clofibrate on protein expression in rat liver,” Proteomics, vol. 6, no. 6, pp. 1915–1933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. O. Ngo, G. R. LePage, J. W. Thanassi, N. Meisler, and L. M. Nutter, “Absence of pyridoxine-5′-phosphate oxidase (PNPO) activity in neoplastic cells: isolation, characterization, and expression of PNPO cDNA,” Biochemistry, vol. 37, no. 21, pp. 7741–7748, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bagci, J. Zschocke, G. F. Hoffmann et al., “Pyridoxal phosphate-dependent neonatal epileptic encephalopathy,” Archives of Disease in Childhood, vol. 93, no. 2, pp. F151–F152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Zhang, H. X. Li, L. Song et al., “Screening differential expression of Taxo-l resistance related gene of ovarian carcinnoma by cDNA microarray,” Cancer Research on Prevention and Treatment, vol. 33, no. 1, pp. 32–35, 2006. View at Google Scholar
  21. Y.-Z. Li, Z.-L. Gao, J.-L. Zuo et al., “Expressions of annexina1, 14-3-3 protein ε and peroxiredoxin 1 giant cell tumor of bone,” Journal of Jilin University, vol. 32, no. 3, pp. 489–492, 2006. View at Google Scholar · View at Scopus
  22. B. Husbeck, M. I. Berggren, and G. Powis, “DNA microarray reveals increased expression of thioredoxin peroxidase in thioredoxin-1 transfected cells and its functional consequences,” Advances in Experimental Medicine and Biology, vol. 500, pp. 157–168, 2001. View at Google Scholar · View at Scopus
  23. Y. Lu, J. Liu, C. Lin et al., “Peroxiredoxin 2: a potential biomarker for early diagnosis of Hepatitis B Virus related liver fibrosis identified by proteomic analysis of the plasma,” BMC Gastroenterology, vol. 10, article 115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Li, X. Qin, J. Cui et al., “Proteoma analysis of aflatioxin B1-induced hepatocarcino genesis in the tree shrew and functional identification of candidate protein peroxiredoxin?” Proteomics, vol. 8, no. 7, pp. 1490–1501, 2008. View at Google Scholar
  25. M. E. Minard, L. M. Ellis, and G. E. Gallick, “Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells,” Clinical and Experimental Metastasis, vol. 23, no. 5-6, pp. 301–313, 2006. View at Publisher · View at Google Scholar · View at Scopus