Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 349408, 9 pages
http://dx.doi.org/10.1155/2013/349408
Research Article

Functionalized Magnetic Nanoparticles for the Detection and Quantitative Analysis of Cell Surface Antigen

1Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
2Department of Medical Physics, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
3Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
4Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium
5Micromod Partikletechnologie GmbH, Rostock, Germany

Received 14 September 2012; Accepted 5 December 2012

Academic Editor: Susana N. Diniz

Copyright © 2013 Daryoush Shahbazi-Gahrouei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Chen, R. Liu, Z. P. Liu, M. Li, and K. Aihara, “Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers,” Scientific Reports, vol. 2, p. 342, 2012. View at Publisher · View at Google Scholar
  2. J. A. Luna-Coronell, P. Syed, K. Sergelen, I. Gyurján, and A. Weinhäusel, “The current status of cancer biomarker research using tumour-associated antigens for minimal invasive and early cancer diagnostics,” Journal of Proteomics, vol. 76, pp. 102–115, 2012. View at Publisher · View at Google Scholar
  3. H. J. Lee, A. W. Wark, and R. M. Corn, “Microarray methods for protein biomarker detection,” Analyst, vol. 133, no. 8, pp. 975–983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Simon, “Genomic biomarkers in predictive medicine: an interim analysis,” EMBO Molecular Medicine, vol. 3, no. 8, pp. 429–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Magni, Y. E. van der Burgt, C. Chinello et al., “Biomarkers discovery by peptide and protein profiling in biological fluids based on functionalized magnetic beads purification and mass spectrometry,” Blood Transfusion, vol. 8, supplement 3, pp. s92–s97, 2010. View at Publisher · View at Google Scholar
  6. J. C. Hall, L. Casciola-Rosen, and A. Rosen, “Altered structure of autoantigens during apoptosis,” Rheumatic Disease Clinics of North America, vol. 30, no. 3, pp. 455–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Belov, J. Zhou, and R. I. Christopherson, “Cell surface markers in colorectal cancer prognosis,” International Journal of Molecular Sciences, vol. 12, no. 1, pp. 78–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Schrevel, R. Karim, N. T. ter Haar et al., “CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients,” British Journal of Cancer, vol. 106, no. 9, pp. 1520–1525, 2012. View at Publisher · View at Google Scholar
  9. F. Pagès, J. Galon, M. C. Dieu-Nosjean, E. Tartour, C. Sautès-Fridman, and W. H. Fridman, “Immune infiltration in human tumors: a prognostic factor that should not be ignored,” Oncogene, vol. 29, no. 8, pp. 1093–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Holmes, L. M. Lantz, B. J. Fowlkes, I. Schmid, and J. V. Giorgi, “Preparation of cells and reagents for flow cytometry,” Current Protocols in Immunology, vol. 5, p. 5.3, 2001. View at Google Scholar · View at Scopus
  11. L. S. Zijenah, G. Kadzirange, S. Madzime et al., “Affordable flow cytometry for enumeration of absolute CD4+ T-lymphocytes to identify subtype C HIV-1 infected adults requiring antiretroviral therapy (ART) and monitoring response to ART in a resource-limited setting,” Journal of Translational Medicine, vol. 4, article 33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Karl, R. P. Wong, T. G. St Pierre, and T. M. Davis, “A comparative study of a flow-cytometry-based assessment of in vitro plasmodium falciparum drug sensitivity,” Malaria Journal, vol. 8, no. 1, article 294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Ranzoni, G. Sabatte, L. J. van Ijzendoorn, and M. W. Prins, “One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma,” ACS Nano, vol. 6, no. 4, pp. 3134–3141, 2012. View at Publisher · View at Google Scholar
  14. C. M. Long, H. W. M. Van Laarhoven, J. W. M. Bulte, and H. I. Levitsky, “Magnetovacci nation as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes,” Cancer Research, vol. 69, no. 7, pp. 3180–3187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. Towner, N. Smith, S. Doblas et al., “In vivo detection of c-Met expression in a rat C6 glioma model,” Journal of Cellular and Molecular Medicine, vol. 12, no. 1, pp. 174–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Elsässer-Beile, P. Bühler, and P. Wolf, “Targeted therapies for prostate cancer against the prostate specific membrane antigen,” Current Drug Targets, vol. 10, no. 2, pp. 118–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Bühler, P. Wolf, and U. Elsässer-Beile, “Targeting the prostate-specific membrane antigen for prostate cancer therapy,” Immunotherapy, vol. 1, no. 3, pp. 471–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Shahbazi-Gahrouei, S. M. Rizvi, M. A. Williams, and B. J. Allen, “In vitro studies of gadolinium-DTPA conjugated with monoclonal antibodies as cancer-specific magnetic resonance imaging contrast agents,” Australasian Physical and Engineering Sciences in Medicine, vol. 25, no. 1, pp. 31–38, 2002. View at Google Scholar · View at Scopus
  19. M. Abdolahi, D. Shahbazi-Gahrouei, S. Laurent et al., “Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer,” Contrast Media & Molecular Imaging, vol. 8, no. 2, pp. 175–184, 2013. View at Google Scholar
  20. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  21. J. Woźniak, “Two methods for the quantitative analysis of surface antigen expression in acute myeloid leukemia (AML),” Folia Histochemica et Cytobiologica, vol. 42, no. 3, pp. 195–199, 2004. View at Google Scholar · View at Scopus
  22. J. Sikora and J. Zeromski, “Expression of TCR-ζ chain and apoptosis in subpopulations of tumor-associated lymphocytes (TALs) from malignant pleural effusions,” Folia Histochemica et Cytobiologica, vol. 40, no. 4, pp. 347–351, 2002. View at Google Scholar · View at Scopus
  23. R. E. Serda, N. L. Adolphi, M. Bisoffi, and L. O. Sillerud, “Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging,” Molecular Imaging, vol. 6, no. 4, pp. 277–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Hoelzer, “Novel antibody-based therapies for acute lymphoblastic leukemia,” Hematology/the Education Program of the American Society of Hematology, pp. 243–249, 2011. View at Publisher · View at Google Scholar
  25. J. Ren, Z. Zhang, F. Wang et al., “MRI of prostate stem cell antigen expression in prostate tumors,” Nanomedicine, vol. 7, no. 5, pp. 691–703, 2012. View at Publisher · View at Google Scholar
  26. C. S. S. R. Kumar, Biofunctionalization of Nanomaterials, Wiley-VCH, Weinheim, Germany, 1st edition, 2005.
  27. K. K. Jain, The Handbook of Biomarkers, Springer, New York, NY, USA, 2010.
  28. G. G. Westmeyer, Y. Durocher, and A. Jasanoff, “A secreted enzyme reporter system for MRI,” Angewandte Chemie International Edition, vol. 49, no. 23, pp. 3909–3911, 2010. View at Publisher · View at Google Scholar · View at Scopus