Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 364073, 6 pages
http://dx.doi.org/10.1155/2013/364073
Research Article

SNP rs2073618 of the Osteoprotegerin Gene Is Associated with Diabetic Retinopathy in Slovenian Patients with Type 2 Diabetes

1Institute of Histology and Embryology, Medical Faculty, University Ljubljana, Korytkova 2, 1105 Ljubljana, Slovenia
2University Medical Centre, Eye Clinic, Grablovičeva 46, 1000 Ljubljana, Slovenia

Received 23 July 2013; Accepted 12 September 2013

Academic Editor: Borut Peterlin

Copyright © 2013 Sara Mankoč Ramuš et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Awata, K. Inoue, S. Kurihara et al., “A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes,” Diabetes, vol. 51, no. 5, pp. 1635–1639, 2002. View at Google Scholar · View at Scopus
  2. Y. Lu, Y. Shi, Y. Ge, J. Yin, and Z. Huang, “Two polymorphisms (Rs699947, Rs2010963) in the VEGFA gene and diabetic retinopathy: an updated meta-analysis,” Journal of Diabetes & Metabolism, supplement 3, p. 6, 2012. View at Google Scholar
  3. M. P. Treacy and T. P. Hurst, “The case for intraocular delivery of PPAR agonists in the treatment of diabetic retinopathy,” BMC Ophthalmology, vol. 12, article 46, 2012. View at Google Scholar
  4. S. T. Knudsen, C. H. Foss, P. L. Poulsen, N. H. Andersen, C. E. Mogensen, and L. M. Rasmussen, “Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular with microvascular complications,” European Journal of Endocrinology, vol. 149, no. 1, pp. 39–42, 2003. View at Google Scholar · View at Scopus
  5. G. M. Jørgensen, B. Vind, M. Nybo, L. M. Rasmussen, and K. Højlund, “Acute hyperinsulinemia decreases plasma osteoprotegerin with diminished effect in type 2 diabetes and obesity,” European Journal of Endocrinology, vol. 161, no. 1, pp. 95–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. Rasmussen, L. Tarnow, T. K. Hansen, H.-H. Parving, and A. Flyvbjerg, “Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular mordibity in type 1 diabetic patients,” European Journal of Endocrinology, vol. 154, no. 1, pp. 75–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Lieb, P. Gona, M. G. Larson et al., “Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 9, pp. 1849–1854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhang, M. Fu, D. Myles et al., “PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways,” FEBS Letters, vol. 521, no. 1–3, pp. 180–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Hofbauer and A. E. Heufelder, “Clinical review 114 - Hot topic: the role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 7, pp. 2355–2363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Wuyts, L. Van Wesenbeeck, A. Morales-Piga et al., “Evaluation of the role of RANK and OPG genes in Paget's disease of bone,” Bone, vol. 28, no. 1, pp. 104–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Alvarez, P. Peris, N. Guañabens et al., “Serum osteoprotegerin and its ligand in Paget's disease of bone: relationship to disease activity and effect of treatment with bisphosphonates,” Arthritis & Rheumatism, vol. 48, no. 3, pp. 824–828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. L. C. Hofbauer and M. Schoppet, “Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases,” The Journal of the American Medical Association, vol. 292, no. 4, pp. 490–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kiechl, G. Schett, G. Wenning et al., “Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease,” Circulation, vol. 109, no. 18, pp. 2175–2180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ziegler, S. Kudlacek, A. Luger, and E. Minar, “Osteoprotegerin plasma concentrations correlate with severity of peripheral artery disease,” Atherosclerosis, vol. 182, no. 1, pp. 175–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Papadopouli, C. N. Klonaris, and S. E. Theocharis, “Role of OPG/RANKL/RANK axis on the vasculature,” Histology and Histopathology, vol. 23, no. 4–6, pp. 497–506, 2008. View at Google Scholar · View at Scopus
  16. A. Avignon, A. Sultan, C. Piot, S. Elaerts, J. P. Cristol, and A. M. Dupuy, “Osteoprotegerin is associated with silent coronary artery disease in high-risk but asymptomatic type 2 diabetic patients,” Diabetes Care, vol. 28, no. 9, pp. 2176–2180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Olesen, T. Ledet, and L. M. Rasmussen, “Arterial osteoprotegerin: increased amounts in diabetes and modifiable synthesis from vascular smooth muscle cells by insulin and TNF-α,” Diabetologia, vol. 48, no. 3, pp. 561–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. S. Jang, G. S. Young, and H. C. Choon, “Elevated serum osteoprotegerin levels are associated with vascular endothelial dysfunction in type 2 diabetes,” Diabetes Care, vol. 29, no. 7, pp. 1664–1666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. K. Singh, P. Winocour, and K. Farrington, “Endothelial cell dysfunction, medial arterial calcification and osteoprotegerin in diabetes,” British Journal of Diabetes and Vascular Disease, vol. 10, no. 2, pp. 71–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Jeffcoate, “Vascular calcification and osteolysis in diabetic neuropathy—is RANK-L the missing link?” Diabetologia, vol. 47, no. 9, pp. 1488–1492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Grauslund, L. M. Rasmussen, A. Green, and A. K. Sjølie, “Does osteoprotegerin relate to micro- and macrovascular complications in long-term type 1 diabetes?” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 70, no. 3, pp. 188–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Kahn and Expert Commitee on the Diagnosis and Classification of Diabetes Mellitus, “Follow up report on the diagnosis of diabetes mellitus,” Diabetes Care, vol. 26, no. 11, pp. 3160–3167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Early Treatment Diabetic Retinopathy Study Research Group, “Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification ETDRS report number 10,” Ophthalmology, vol. 98, supplement 5, pp. 786–806, 1991. View at Google Scholar
  24. D. Pitocco, G. Zelano, G. Gioffrè et al., “Association between osteoprotegerin G1181C and T245G polymorphisms and diabetic charcot neuroarthropathy: a case-control study,” Diabetes Care, vol. 32, no. 9, pp. 1694–1697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Elston and R. Forthofer, “Testing for Hardy-Weinberg equilibrium in small samples,” Biometrics, vol. 33, no. 3, pp. 536–542, 1977. View at Google Scholar · View at Scopus
  26. “The 1000 Genomes Project,” http://www.1000genomes.org/.
  27. F. Biscetti, G. Straface, S. Giovannini et al., “Association between TNFRSF11B gene polymorphisms and history of ischemic stroke in Italian diabetic patients,” Human Genetics, vol. 132, no. 1, pp. 49–55, 2013. View at Google Scholar
  28. P. Nehring, B. Mrozikiewicz-Rakowska, A. Sobczyk-Kopcioł et al., “Osteoprotegerin gene rs2073617 and rs3134069 polymorphisms in type 2 diabetes patients and sex-specific rs2073618 polymorphism as a risk factor for diabetic foot,” Polish Archives of Internal Medicine, vol. 123, no. 4, pp. 176–182, 2013. View at Google Scholar
  29. A. Korzon-Burakowska, J. Jakóbkiewicz-Banecka, A. Fiedosiuk et al., “Osteoprotegerin gene polymorphism in diabetic Charcot neuroarthropathy,” Diabetic Medicine, vol. 29, no. 6, pp. 771–775, 2012. View at Google Scholar
  30. A. Van Campenhout and J. Golledge, “Osteoprotegerin, vascular calcification and atherosclerosis,” Atherosclerosis, vol. 204, no. 2, pp. 321–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y.-H. Chang, K.-D. Lin, S.-R. He, M.-C. Hsieh, J.-Y. Hsiao, and S.-J. Shin, “Serum osteoprotegerin and tumor necrosis factor related apoptosis inducing-ligand (TRAIL) are elevated in type 2 diabetic patients with albuminuria and serum osteoprotegerin is independently associated with the severity of diabetic nephropathy,” Metabolism, vol. 60, no. 8, pp. 1064–1069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Secchiero, F. Corallini, A. Pandolfi et al., “An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction,” American Journal of Pathology, vol. 169, no. 6, pp. 2236–2244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. D. T. Graves and R. A. Kayal, “Diabetic complications and dysregulated innate immunity,” Frontiers in Bioscience, vol. 13, no. 4, pp. 1227–1239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H.-H. Kim, H. S. Shin, H. J. Kwak et al., “RANKL regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway,” The FASEB Journal, vol. 17, no. 14, pp. 2163–2165, 2003. View at Google Scholar · View at Scopus
  35. C. D. A. Stehouwer, J. Lambert, A. J. M. Donker, and V. W. M. Van Hinsbergh, “Endothelial dysfunction and pathogenesis of diabetic angiopathy,” Cardiovascular Research, vol. 34, no. 1, pp. 55–68, 1997. View at Publisher · View at Google Scholar · View at Scopus