Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 379438, 7 pages
http://dx.doi.org/10.1155/2013/379438
Research Article

Paired Ductal Carcinoma In Situ and Invasive Breast Cancer Lesions in the D-Loop of the Mitochondrial Genome Indicate a Cancerization Field Effect

1Mitomics Inc., 290 Munro Street, Suite 1000, Thunder Bay, ON, Canada P7A 7T1
2Department of Surgery, Thunder Bay Regional Health Sciences Centre, 980 Oliver Road, Thunder Bay, ON, Canada P7B 6V4
3Mitomics Inc., UK Ltd. Cels At Newcastle, Medical School, University of Newcastle, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
4Department of Pathology, Saint Mary's Duluth Clinic, 400 East Third Street, Duluth, MN 55805, USA

Received 6 July 2012; Accepted 26 September 2012

Academic Editor: John Jakupciak

Copyright © 2013 Andrea Maggrah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Cancer Facts & Figures Atlanta: American Cancer Society, p. 68, 2008.
  2. D. B. Thomas, D. L. Gao, R. M. Ray et al., “Randomized trial of breast self-examination in Shanghai: final results,” Journal of the National Cancer Institute, vol. 94, no. 19, pp. 1445–1457, 2002. View at Google Scholar · View at Scopus
  3. D. B. Thomas, D. L. Gao, S. G. Self et al., “Randomized trial of breast self-examination in Shanghai: methodology and preliminary results,” Journal of the National Cancer Institute, vol. 89, no. 5, pp. 355–365, 1997. View at Google Scholar · View at Scopus
  4. J. E. Joy, E. E. Penhoet, D. B. Petitti et al., Eds., Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis, National Academies Press, 2005.
  5. H. M. Kuerer, C. T. Albarracin, W. T. Yang et al., “Ductal carcinoma in situ: state of the science and roadmap to advance the field,” Journal of Clinical Oncology, vol. 27, no. 2, pp. 279–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Parr, J. P. Jakupciak, M. A. Birch-Machin, and G. D. Dakubo, “The mitochondrial genome: a biosensor for early cancer detection?” Expert Opinion on Medical Diagnostics, vol. 1, no. 2, pp. 169–182, 2007. View at Publisher · View at Google Scholar
  7. S. Meyer, G. Weiss, and A. von Haeseler, “Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA,” Genetics, vol. 152, no. 3, pp. 1103–1110, 1999. View at Google Scholar · View at Scopus
  8. R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull, and N. Howell, “Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA,” Nature Genetics, vol. 23, no. 2, p. 147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Parr, G. D. Dakubo, K. A. Crandall et al., “Somatic mitochondrial DNA mutations in prostate cancer and normal appearing adjacent glands in comparison to age-matched prostate samples without malignant histology,” The Journal of Molecular Diagnostics, vol. 8, no. 3, pp. 312–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Parfait, P. Rustin, A. Munnich, and A. Rötig, “Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 57–59, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. R. L. Parr, J. Maki, B. Reguly et al., “The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation,” BMC Genomics, vol. 7, article 185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Allred, Y. Wu, S. Mao et al., “Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution,” Clinical Cancer Research, vol. 14, no. 2, pp. 370–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Dakubo, J. P. Jakupciak, M. A. Birch-Machin, and R. L. Parr, “Clinical implications and utility of field cancerization,” Cancer Cell International, vol. 7, article 2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Xu, D. Tran-Thanh, C. Ma et al., “Mitochondrial D310 mutations in the early development of breast cancer,” British Journal of Cancer, vol. 106, pp. 1506–1511, 2012. View at Publisher · View at Google Scholar
  15. C. M. Heaphy, M. Bisoffi, C. A. Fordyce et al., “Telomere DNA content and allelic imbalance demonstrate field cancerization in histologically normal tissue adjacent to breast tumors,” International Journal of Cancer, vol. 119, no. 1, pp. 108–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Steiling, J. Ryan, J. S. Brody, and A. Spira, “The field of tissue injury in the lung and airway,” Cancer Prevention Research, vol. 1, no. 6, pp. 396–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. J. M. Braakhuis, C. R. Leemans, and R. H. Brakenhoff, “Expanding fields of genetically altered cells in head and neck squamous carcinogenesis,” Seminars in Cancer Biology, vol. 15, no. 2, pp. 113–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Tanaka, “Colorectal carcinogenesis: review of human and experimental animal studies,” Journal of Carcinogenesis, vol. 8, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Tseng, P. H. Yin, C. W. Chi et al., “Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer,” Genes Chromosomes and Cancer, vol. 45, no. 7, pp. 629–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Jakupciak, A. Maggrah, S. Maragh et al., “Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0,” BMC Cancer, vol. 8, article 95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. Pawlik, H. Fritsche, K. R. Coombes et al., “Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry,” Breast Cancer Research and Treatment, vol. 89, no. 2, pp. 149–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Khan, E. L. Wiley, N. Rodriguez et al., “Ductal lavage findings in women with known breast cancer undergoing mastectomy,” Journal of the National Cancer Institute, vol. 96, no. 20, pp. 1510–1517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Baltzell, M. Moghadassi, T. Rice, J. D. Sison, and M. Wrensch, “Epithelial cells in nipple aspirate fluid and subsequent breast cancer risk: a historic prospective study,” BMC Cancer, vol. 8, article 75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. R. Sauter, C. Wagner-Mann, H. Ehya, and A. Klein-Szanto, “Biologic markers of breast cancer in nipple aspirate fluid and nipple discharge are associated with clinical findings,” Cancer Detection and Prevention, vol. 31, no. 1, pp. 50–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Zhu, W. Qin, P. Bradley, A. Wessel, C. L. Puckett, and E. R. Sauter, “Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid,” Carcinogenesis, vol. 26, no. 1, pp. 145–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Li, J. Zhao, X. Yu et al., “Identification of biomarkers for breast cancer in nipple aspiration and ductal lavage fluid,” Clinical Cancer Research, vol. 11, no. 23, pp. 8312–8320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. W. L. Buntain, M. M. Woolley, G. H. Mahour et al., “Pulmonary sequestration in children: a twenty five year experience,” Surgery, vol. 81, no. 4, pp. 413–420, 1977. View at Google Scholar · View at Scopus
  28. W. C. Dooley, B. M. Ljung, U. Veronesi et al., “Ductal lavage for detection of cellular atypia in women at high risk for breast cancer,” Journal of the National Cancer Institute, vol. 93, no. 21, pp. 1624–1632, 2001. View at Google Scholar · View at Scopus
  29. E. R. Sauter, H. Ehya, J. Babb et al., “Biologic markers of risk in nipple aspirate fluid are associated with residual cancer and tumour size,” British Journal of Cancer, vol. 81, no. 7, pp. 1222–1227, 1999. View at Google Scholar · View at Scopus
  30. E. R. Sauter, E. Ross, M. Daly et al., “Nipple aspirate fluid: a promising non-invasive method to identify cellular markers of breast cancer risk,” British Journal of Cancer, vol. 76, no. 4, pp. 494–501, 1997. View at Google Scholar · View at Scopus
  31. M. R. Wrensch, N. L. Petrakis, E. B. King et al., “Breast cancer incidence in women with abnormal cytology in nipple aspirates of breast fluid,” American Journal of Epidemiology, vol. 135, no. 2, pp. 130–141, 1992. View at Google Scholar · View at Scopus