Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 390630, 6 pages
Review Article

A Review of Haptoglobin Typing Methods for Disease Association Study and Preventing Anaphylactic Transfusion Reaction

1Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
2Department of Laboratory Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea

Received 27 November 2012; Accepted 5 February 2013

Academic Editor: Mina Hur

Copyright © 2013 Dae-Hyun Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Haptoglobin, the product of the gene, is a glycoprotein involved in the scavenging of free hemoglobin. Haptoglobin levels increase or decrease in response to various acquired conditions, and they are also influenced by genetic predisposition. There were 2 major alleles, and , and 1 minor allele, . Many researchers have attempted to study the haptoglobin types and their association with disease; however, no definitive conclusions have been reached yet. It is reported that patients who are genetically deficient in haptoglobin are at risk of anaphylaxis against blood components containing haptoglobin. Haptoglobin genotypes also affect the reference intervals of haptoglobin levels. Many studies have attempted to establish simple and accurate typing methods. In this paper, we have broadly reviewed several methods for haptoglobin typing—phenotyping, Southern blotting, conventional PCR, real-time PCR, and loop-mediated isothermal amplification. We discuss their characteristics, clinical applications, and limitations. The phenotyping methods are time consuming and labor intensive and not designed to detect patients harboring . The rapid and robust haptoglobin genotyping may help in preventing fatal anaphylactic reactions and in establishing the relationships between the haptoglobin phenotypes and diseases.