Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 391821, 13 pages
http://dx.doi.org/10.1155/2013/391821
Review Article

Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1

Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia

Received 26 October 2012; Accepted 5 February 2013

Academic Editor: Yasemin Alanay

Copyright © 2013 Dušanka Savić Pavićević et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Steinert, “Uber das klinishe und anatomische bild des muskelschwundes der myotoniker,” Deutsche Zeitschrift für Nervenheilkunde, vol. 37, p. 38, 1909. View at Google Scholar
  2. F. E. Batten and H. P. Gibb, “Myotonia atrophica,” Brain, vol. 32, no. 2, pp. 187–205, 1909. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Harper, Myotonic Dystrophy, WB Saunders, London, UK, 3rd edition, 2001.
  4. H. G. Harley, J. D. Brook, S. A. Rundle et al., “Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy,” Nature, vol. 355, no. 6360, pp. 545–547, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Fleischer, “Über myotonische dystrophie mit katarakt,” Albrecht von Græfes Archiv für Ophthalmologie, vol. 96, no. 1-2, pp. 91–133, 1918. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Höweler, H. F. Busch, J. P. Geraedts, M. F. Niermeijer, and A. Staal, “Anticipation in myotonic dystrophy: fact or fiction?” Brain, vol. 112, part 3, pp. 779–797, 1989. View at Google Scholar · View at Scopus
  7. J. D. Brook, M. E. McCurrach, H. G. Harley et al. et al., “Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member,” Cell, vol. 68, no. 2, pp. 799–808, 1992. View at Google Scholar
  8. M. Mahadevan, C. Tsilfidis, L. Sabourin et al., “Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene,” Science, vol. 255, no. 5049, pp. 1253–1255, 1992. View at Google Scholar · View at Scopus
  9. Y. H. Fu, A. Pizzuti, R. G. Fenwick et al., “An unstable triplet repeat in a gene related to myotonic muscular dystrophy,” Science, vol. 255, no. 5049, pp. 1256–1258, 1992. View at Google Scholar · View at Scopus
  10. C. A. Boucher, S. K. King, N. Carey et al., “A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat,” Human Molecular Genetics, vol. 4, no. 10, pp. 1919–1925, 1995. View at Google Scholar · View at Scopus
  11. J. R. Gatchel and H. Y. Zoghbi, “Diseases of unstable repeat expansion: mechanisms and common principles,” Nature Reviews Genetics, vol. 6, no. 10, pp. 743–755, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Wells and T. Ashizawa, Genetic Instabilities and Hereditary Neurological Diseases, Elsevier, 2nd edition, 2006.
  13. A. Mankodi, E. Logigian, L. Callahan et al., “Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat,” Science, vol. 289, no. 5485, pp. 1769–1772, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. W. Day and L. P. W. Ranum, “RNA pathogenesis of the myotonic dystrophies,” Neuromuscular Disorders, vol. 15, no. 1, pp. 5–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. Cho and S. J. Tapscott, “Myotonic dystrophy: emerging mechanisms for DM1 and DM2,” Biochimica et Biophysica Acta, vol. 1772, no. 2, pp. 195–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Lee and T. A. Cooper, “Pathogenic mechanisms of myotonic dystrophy,” Biochemical Society Transactions, vol. 37, no. 6, pp. 1281–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Udd and R. Krahe, “The myotonic dystrophies: molecular, clinical, and therapeutic challenges,” Lancet Neurology, vol. 11, no. 10, pp. 891–905, 2012. View at Google Scholar
  18. C. Delaporte, “Personality patterns in patients with myotonic dystrophy,” Archives of Neurology, vol. 55, no. 5, pp. 635–640, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. C. E. M. de Die-Smulders, C. J. Höweler, C. Thijs et al., “Age and causes of death in adult-onset myotonic dystrophy,” Brain, vol. 121, no. 8, pp. 1557–1563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mathieu, P. Allard, L. Potvin, C. Prévost, and P. Begin, “A 10-year study of mortality in a cohort of patients with myotonic dystrophy,” Neurology, vol. 52, no. 8, pp. 1658–1662, 1999. View at Google Scholar · View at Scopus
  21. J. Mladenovic, T. Pekmezovic, S. Todorovic et al., “Survival and mortality of myotonic dystrophy type 1 (Steinert's disease) in the population of Belgrade,” European Journal of Neurology, vol. 13, no. 5, pp. 451–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. S. Harper, “Congenital myotonic dystrophy in Britain. I. Clinical aspects,” Archives of Disease in Childhood, vol. 50, no. 7, pp. 505–513, 1975. View at Google Scholar · View at Scopus
  23. M. A. Rutherford, J. Z. Heckmatt, and V. Dubowitz, “Congenital myotonic dystrophy: respiratory function at birth determines survival,” Archives of Disease in Childhood, vol. 64, no. 2, pp. 191–195, 1989. View at Google Scholar · View at Scopus
  24. W. Reardon, R. Newcombe, I. Fenton, J. Sibert, and P. S. Harper, “The natural history of congenital myotonic dystrophy: mortality and long term clinical aspects,” Archives of Disease in Childhood, vol. 68, no. 2, pp. 177–181, 1993. View at Google Scholar · View at Scopus
  25. B. Echenne, A. Rideau, A. Roubertie, G. Sébire, F. Rivier, and B. Lemieux, “Myotonic dystrophy type I in childhood. Long-term evolution in patients surviving the neonatal period,” European Journal of Paediatric Neurology, vol. 12, no. 3, pp. 210–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Arsenault, C. Prévost, A. Lescault, C. Laberge, J. Puymirat, and J. Mathieu, “Clinical characteristics of myotonic dystrophy type 1 patients with small CTG expansions,” Neurology, vol. 66, no. 8, pp. 1248–1250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. S. Harper and R. Rudel, “Myotonic dystrophy,” in Myology, Engel and Franzini-Armstrong, vol. 2, chapter 43, pp. 1192–1218, McGraw-Hill, New York, NY, USA, 1994. View at Google Scholar
  28. P. S. Harper and P. R. Dyken, “Early-onset dystrophia myotonica. Evidence supporting a maternal environmental factor,” Lancet, vol. 2, no. 7767, pp. 53–55, 1972. View at Google Scholar · View at Scopus
  29. P. R. Dyken and P. S. Harper, “Congenital dystrophia myotonica,” Neurology, vol. 23, no. 5, pp. 465–473, 1973. View at Google Scholar · View at Scopus
  30. J. Bell, “Dystrophia myotonica and allied diseases,” Treasury of Human Inheritance, vol. 4, pp. 342–410, 1947. View at Google Scholar
  31. D. Klein, “La dystrophie myotonique (Steinert) et la myotonie congenitale [Thomsen] en Suisse: etude clinique, genetique, et demographique,” Journal De Génétique Humaine, vol. 7, no. 20–41, pp. 320–326, 1958. View at Google Scholar
  32. H. G. Brunner, H. T. Bruggenwirth, W. Nillesen et al., “Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM),” American Journal of Human Genetics, vol. 53, no. 5, pp. 1016–1023, 1993. View at Google Scholar · View at Scopus
  33. R. I. Richards and G. R. Sutherland, “Dynamic mutations: a new class of mutations causing human disease,” Cell, vol. 70, no. 5, pp. 709–712, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. La Spada and J. P. Taylor, “Repeat expansion disease: progress and puzzles in disease pathogenesis,” Nature Reviews Genetics, vol. 11, no. 4, pp. 247–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Brinkmann, M. Klintschar, F. Neuhuber, J. Hühne, and B. Rolf, “Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat,” American Journal of Human Genetics, vol. 62, no. 6, pp. 1408–1415, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Mirkin, “Expandable DNA repeats and human disease,” Nature, vol. 447, no. 7147, pp. 932–940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. I. Richards, “Dynamic mutations: a decade of unstable expanded repeats in human genetic disease,” Human Molecular Genetics, vol. 10, no. 20, pp. 2187–2194, 2001. View at Google Scholar · View at Scopus
  38. The International Myotonic Dystrophy Consortium (IDMC), “New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1),” Neurology, vol. 54, no. 6, pp. 1218–1221, 2000. View at Google Scholar · View at Scopus
  39. H. G. Harley, S. A. Rundle, J. C. MacMillan et al., “Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy,” American Journal of Human Genetics, vol. 52, no. 6, pp. 1164–1174, 1993. View at Google Scholar · View at Scopus
  40. C. Lavedan, H. Hofmann-Radvanyi, P. Shelbourne et al., “Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism,” American Journal of Human Genetics, vol. 52, no. 5, pp. 875–883, 1993. View at Google Scholar · View at Scopus
  41. J. M. Barcelo, M. S. Mahadevan, C. Tsilfidis, A. E. MacKenzie, and R. G. Korneluk, “Intergenerational stability of the myotonic dystrophy protomutation,” Human Molecular Genetics, vol. 2, no. 6, pp. 705–709, 1993. View at Google Scholar · View at Scopus
  42. H. Yamagata, T. Miki, S. I. Sakoda et al., “Detection of a premutation in Japanese myotonic dystrophy,” Human Molecular Genetics, vol. 3, no. 5, pp. 819–820, 1994. View at Google Scholar · View at Scopus
  43. Z. Musova, R. Mazanec, A. Krepelova et al., “Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene,” American Journal of Medical Genetics A, vol. 149, no. 7, pp. 1365–1369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Braida, R. K. A. Stefanatos, B. Adam et al., “Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients,” Human Molecular Genetics, vol. 19, no. 8, Article ID ddq015, pp. 1399–1412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Tsilfidis, A. E. MacKenzie, G. Mettler, J. Barceló, and R. G. Korneluk, “Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy,” Nature Genetics, vol. 1, no. 3, pp. 192–195, 1992. View at Google Scholar · View at Scopus
  46. T. Ashizawa, P. W. Dunne, P. A. Ward, W. K. Seltzer, and C. S. Richards, “Effects of the sex of myotonic dystrophy patients on the unstable triplet repeat in their affected offspring,” Neurology, vol. 44, no. 1, pp. 120–122, 1994. View at Google Scholar · View at Scopus
  47. K. L. O'Hoy, C. Tsilfidis, M. S. Mahadevan et al., “Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission,” Science, vol. 259, no. 5096, pp. 809–812, 1993. View at Google Scholar · View at Scopus
  48. T. Ashizawa, M. Anvret, M. Baiget et al., “Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy,” American Journal of Human Genetics, vol. 54, no. 3, pp. 414–423, 1994. View at Google Scholar · View at Scopus
  49. H. G. Brunner, G. Jansen, W. Nillesen et al., “Brief report: reverse mutation in myotonic dystrophy,” New England Journal of Medicine, vol. 328, no. 7, pp. 476–480, 1993. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Martorell, D. G. Monckton, A. Sanchez, A. Lopez de Munain, and M. Baiget, “Frequency and stability of the myotonic dystrophy type 1 premutation,” Neurology, vol. 56, no. 3, pp. 328–335, 2001. View at Google Scholar · View at Scopus
  51. Z. Simmons, C. A. Thornton, W. K. Seltzer, and C. Sue Richards, “Relative stability of a minimal CTG repeat expansion in a large kindred with myotonic dystrophy,” Neurology, vol. 50, no. 5, pp. 1501–1504, 1998. View at Google Scholar · View at Scopus
  52. D. Savić, D. Keckarević, V. Branković-Srećković, S. Apostolski, S. Todorović, and S. Romac, “Clinical case report: atypical myopathy in a young girl with 91 CTG repeats in DM1 locus and a positive DM1 family history,” International Journal of Neuroscience, vol. 116, no. 12, pp. 1509–1518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. L. B. Salehi, E. Bonifazi, E. Di Stasio et al., “Risk prediction for clinical phenotype in myotonic dystrophy type 1: data from 2,650 patients,” Genetic Testing, vol. 11, no. 1, pp. 84–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Bergoffen, J. Kant, J. Sladky, D. McDonald-McGinn, E. H. Zackai, and K. H. Fischbeck, “Paternal transmission of congenital myotonic dystrophy,” Journal of Medical Genetics, vol. 31, no. 7, pp. 518–520, 1994. View at Google Scholar · View at Scopus
  55. C. E. M. de Die-Smulders, H. J. M. Smeets, W. Loots et al., “Paternal transmission of congenital myotonic dystrophy,” Journal of Medical Genetics, vol. 34, no. 11, pp. 930–933, 1997. View at Google Scholar · View at Scopus
  56. M. C. Koch, T. Grimm, H. G. Harley, and P. S. Harper, “Genetic risks for children of women with myotonic dystrophy,” American Journal of Human Genetics, vol. 48, no. 6, pp. 1084–1091, 1991. View at Google Scholar · View at Scopus
  57. D. G. Monckton, L. J. C. Wong, T. Ashizawa, and C. T. Caskey, “Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses,” Human Molecular Genetics, vol. 4, no. 1, pp. 1–8, 1995. View at Google Scholar · View at Scopus
  58. Y. P. Goldberg, B. Kremer, S. E. Andrew et al., “Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects,” Nature Genetics, vol. 5, no. 2, pp. 174–179, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Trottier, V. Biancalana, and J. L. Mandel, “Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset,” Journal of Medical Genetics, vol. 31, no. 5, pp. 377–382, 1994. View at Google Scholar · View at Scopus
  60. S. S. Chong, E. Almqvist, H. Telenius et al., “Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses,” Human Molecular Genetics, vol. 6, no. 2, pp. 301–309, 1997. View at Google Scholar · View at Scopus
  61. H. E. Malter, J. C. Iber, R. Willemsen et al., “Characterization of the full fragile X syndrome mutation in fetal gametes,” Nature Genetics, vol. 15, no. 2, pp. 165–169, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. M. D. Koob, M. L. Moseley, L. J. Schut et al., “An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8),” Nature Genetics, vol. 21, no. 4, pp. 379–384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Jansen, P. Willems, M. Coerwinkel et al., “Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)(n) repeat variation and selection against extreme expansion in sperm,” American Journal of Human Genetics, vol. 54, no. 4, pp. 575–585, 1994. View at Google Scholar · View at Scopus
  64. L. J. C. Wong, T. Ashizawa, D. G. Monckton, C. T. Caskey, and C. S. Richards, “Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent,” American Journal of Human Genetics, vol. 56, no. 1, pp. 114–122, 1995. View at Google Scholar · View at Scopus
  65. A. J. Jeffreys, K. Tamaki, A. MacLeod, D. G. Monckton, D. L. Neil, and J. A. L. Armour, “Complex gene conversion events in germline mutation at human minisatellites,” Nature Genetics, vol. 6, no. 2, pp. 136–145, 1994. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Martorell, D. G. Monckton, J. Gamez, and M. Baiget, “Complex patterns of male germline instability and somatic mosaicism in myotonic dystrophy type 1,” European Journal of Human Genetics, vol. 8, no. 6, pp. 423–430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. N. de Temmerman, K. Sermon, S. Seneca et al., “Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos,” American Journal of Human Genetics, vol. 75, no. 2, pp. 325–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. D. Kaytor, E. N. Burright, L. A. Duvick, H. Y. Zoghbi, and H. T. Orr, “Increased trinucleotide repeat instability with advanced maternal age,” Human Molecular Genetics, vol. 6, no. 12, pp. 2135–2139, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Seznec, A. S. Lia-Baldini, C. Duros et al., “Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability,” Human Molecular Genetics, vol. 9, no. 8, pp. 1185–1194, 2000. View at Google Scholar · View at Scopus
  70. C. Savouret, C. Garcia-Cordier, J. Megret, H. T. Riele, C. Junien, and G. Gourdon, “MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice,” Molecular and Cellular Biology, vol. 24, no. 2, pp. 629–637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. R. Yoon, L. Dubeau, M. de Young, N. S. Wexler, and N. Arnheim, “Huntington disease expansion mutations in humans can occur before meiosis is completed,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8834–8838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. I. V. Kovtun and C. T. McMurray, “Trinucleotide expansion in haploid germ cells by gap repair,” Nature Genetics, vol. 27, no. 4, pp. 407–411, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Gacy, G. Goellner, N. Juranic, S. Macura, and C. T. McMurray, “Trinucleotide repeats that expand in human disease form hairpin structures in vitro,” Cell, vol. 81, no. 4, pp. 533–540, 1995. View at Google Scholar · View at Scopus
  74. C. T. McMurray, “DNA secondary structure: a common and causative factor for expansion in human disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 1823–1825, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. C. E. Pearson, K. N. Edamura, and J. D. Cleary, “Repeat instability: mechanisms of dynamic mutations,” Nature Reviews Genetics, vol. 6, no. 10, pp. 729–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. J. D. Cleary, K. Nichol, Y. H. Wang, and C. E. Pearson, “Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells,” Nature Genetics, vol. 31, no. 1, pp. 37–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. Yang, R. Lau, J. L. Marcadier, D. Chitayat, and C. E. Pearson, “Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells,” American Journal of Human Genetics, vol. 73, no. 5, pp. 1092–1105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. C. E. Pearson, A. Ewel, S. Acharya, R. A. Fishel, and R. R. Sinden, “Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases,” Human Molecular Genetics, vol. 6, no. 7, pp. 1117–1123, 1997. View at Publisher · View at Google Scholar · View at Scopus
  79. W. J. A. A. van den Broek, M. R. Nelen, D. G. Wansink et al., “Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins,” Human Molecular Genetics, vol. 11, no. 2, pp. 191–198, 2002. View at Google Scholar · View at Scopus
  80. C. Savouret, E. Brisson, J. Essers et al., “CTG repeat instability and size variation timing in DNA repair-deficient mice,” EMBO Journal, vol. 22, no. 9, pp. 2264–2273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Anvret, G. Ahlberg, U. Grandell, B. Hedberg, K. Johnson, and L. Edstrom, “Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy,” Human Molecular Genetics, vol. 2, no. 9, pp. 1397–1400, 1993. View at Google Scholar · View at Scopus
  82. T. Ashizawa, J. R. Dubel, and Y. Harati, “Somatic instability of CTG repeat in myotonic dystrophy,” Neurology, vol. 43, no. 12 I, pp. 2674–2678, 1993. View at Google Scholar · View at Scopus
  83. L. Martorell, D. G. Monckton, J. Gamez et al., “Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients,” Human Molecular Genetics, vol. 7, no. 2, pp. 307–312, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. C. A. Thornton, K. Johnson, and R. T. Moxley III, “Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes,” Annals of Neurology, vol. 35, no. 1, pp. 104–107, 1994. View at Google Scholar · View at Scopus
  85. D. Wöhrle, I. Kennerknecht, M. Wolf, H. Enders, S. Schwemmle, and P. Steinbach, “Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a causal involvement of methyl-directed DNA mismatch repair in triplet repeat stability,” Human Molecular Genetics, vol. 4, no. 7, pp. 1147–1153, 1995. View at Google Scholar · View at Scopus
  86. L. Martorell, K. Johnson, C. A. Boucher, and M. Baiget, “Somatic instability of the myotonic dystrophy (CTG)(n) repeat during human fetal development,” Human Molecular Genetics, vol. 6, no. 6, pp. 877–880, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. C. F. Higham, F. Morales, C. A. Cobbold, D. T. Haydon, and D. G. Monckton, “High levels of somatic DNA diversity at the myotonic dystrophy type 1 locus are driven by ultra-frequent expansion and contraction mutations,” Human Molecular Genetics, vol. 21, no. 11, pp. 2450–2463, 2012. View at Google Scholar
  88. F. Morales, J. M. Couto, C. F. Higham et al., “Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity,” Human Molecular Genetics, vol. 21, no. 16, pp. 3558–3567, 2012. View at Google Scholar
  89. K. Manley, T. L. Shirley, L. Flaherty, and A. Messer, “Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice,” Nature Genetics, vol. 23, no. 4, pp. 471–473, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Gomes-Pereira, M. T. Fortune, L. Ingram, J. P. McAbney, and D. G. Monckton, “Pms2 is a genetic enhancer of trinucleotide CAG-CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion,” Human Molecular Genetics, vol. 13, no. 16, pp. 1815–1825, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. M. G. Hamshere, H. Harley, P. Harper, J. D. Brook, and J. F. Y. Brookfield, “Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions,” Journal of Medical Genetics, vol. 36, no. 1, pp. 59–61, 1999. View at Google Scholar · View at Scopus
  92. K. M. Hsiao, S. S. Chen, S. Y. Li et al., “Epidemiological and genetic studies of myotonic dystrophy type 1 in Taiwan,” Neuroepidemiology, vol. 22, no. 5, pp. 283–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Gennarelli, G. Novelli, F. Andreasi Bassi et al., “Prediction of myotonic dystrophy clinical severity based on the number of intragenic [CTG]n trinucleotide repeats,” American Journal of Medical Genetics, vol. 65, no. 4, pp. 342–347, 1996. View at Google Scholar · View at Scopus
  94. C. Marchini, R. Lonigro, L. Verriello, L. Pellizzari, P. Bergonzi, and G. Damante, “Correlations between individual clinical manifestations and CTG repeat amplification in myotonic dystrophy,” Clinical Genetics, vol. 57, no. 1, pp. 74–82, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Finsterer, E. Gharehbaghi-Schnell, C. Stöllberger, K. Fheodoroff, and A. Seiser, “Relation of cardiac abnormalities and CTG-repeat size in myotonic dystrophy,” Clinical Genetics, vol. 59, no. 5, pp. 350–355, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Merlevede, D. Vermander, P. Theys, E. Legius, H. Ector, and W. Robberecht, “Cardiac involvement and CTG expansion in myotonic dystrophy,” Journal of Neurology, vol. 249, no. 6, pp. 693–698, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. V. Rakočević-Stojanović, D. Savić, S. Pavlović, D. Lavrnić, S. Romac, and S. Apostolski, “Correlation between cardiac involvement and CTG repeat amplification in myotonic dystrophy type 1,” Acta Myologica, vol. 22, no. 1, pp. 26–27, 2003. View at Google Scholar
  98. A. Modoni, G. Silvestri, M. G. Pomponi, F. Mangiola, P. A. Tonali, and C. Marra, “Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1,” Archives of Neurology, vol. 61, no. 12, pp. 1943–1947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Winblad, C. Lindberg, and S. Hansen, “Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DMI),” Behavioral and Brain Functions, vol. 2, article 16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. W. J. Groh, M. R. Groh, C. Shen, D. G. Monckton, C. L. Bodkin, and R. M. Pascuzzi, “Survival and CTG repeat expansion in adults with myotonic dystrophy type 1,” Muscle and Nerve, vol. 43, no. 5, pp. 648–651, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Rakočević-Stojanović, S. Pavlović, D. Lavrinić et al., “Peripheral neuropathy in patients with myotonic dystrophy,” Acta Myologica, vol. 21, no. 1, pp. 36–37, 2002. View at Google Scholar
  102. M. T. Fortune, C. Vassilopoulos, M. I. Coolbaugh, M. J. Siciliano, and D. G. Monckton, “Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability,” Human Molecular Genetics, vol. 9, no. 3, pp. 439–445, 2000. View at Google Scholar · View at Scopus
  103. D. Savić, V. Rakočević-Stojanović, D. Keckarević et al., “250 CTG repeats in DMPK is a threshold for correlation of expansion size and age at onset of juvenile-adult DM1,” Human Mutation, vol. 19, no. 2, pp. 131–139, 2002. View at Google Scholar
  104. M. M. Axford, A. López-Castel, M. Nakamori, C. A. Thornton, and C. E. Pearson, “Replacement of the myotonic dystrophy type 1 CTG repeat with ‘non-CTG repeat’ insertions in specific tissues,” Journal of Medical Genetics, vol. 48, no. 7, pp. 438–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. E. P. Leeflang and N. Arnheim, “A novel repeat structure at the myotonic dystrophy locus in a 37 repeat allele with unexpectedly high stability,” Human Molecular Genetics, vol. 4, no. 1, pp. 135–136, 1995. View at Google Scholar · View at Scopus
  106. E. J. Kamsteeg, W. Kress, C. Catalli et al., “Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2,” European Journal of Human Genetics, vol. 20, pp. 1203–1208, 2012. View at Publisher · View at Google Scholar
  107. J. Buxton, P. Shelbourne, J. Davies et al., “Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy,” Nature, vol. 355, no. 6360, pp. 547–548, 1992. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Gennarelli, M. Pavoni, P. Amicucci, G. Novelli, and B. Dallapiccola, “A single polymerase chain reaction-based protocol for detecting normal and expanded alleles in myotonic dystrophy,” Diagnostic Molecular Pathology, vol. 7, no. 3, pp. 135–137, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. J. P. Warner, L. H. Barron, D. Goudie et al., “A general method for the detection of large GAG repeat expansions by fluorescent PCR,” Journal of Medical Genetics, vol. 33, no. 12, pp. 1022–1026, 1996. View at Google Scholar · View at Scopus
  110. J. Radvansky, A. Ficek, and L. Kadasi, “Upgrading molecular diagnostics of myotonic dystrophies: multiplexing for simultaneous characterization of the DMPK and ZNF9 repeat motifs,” Molecular and Cellular Probes, vol. 25, no. 4, pp. 182–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Sermon, S. Seneca, M. de Rycke et al., “PGD in the lab for triplet repeat diseases—myotonic dystrophy, Huntington's disease and Fragile-X syndrome,” Molecular and Cellular Endocrinology, vol. 183, supplement 1, pp. S77–S85, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Radvansky, A. Ficek, G. Minarik, R. Palffy, and L. Kadasi, “Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing,” Diagnostic Molecular Pathology, vol. 20, no. 1, pp. 48–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Borry, L. Stultiens, H. Nys, J. J. Cassiman, and K. Dierickx, “Presymptomatic and predictive genetic testing in minors: a systematic review of guidelines and position papers,” Clinical Genetics, vol. 70, no. 5, pp. 374–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Sermon, W. Lissens, H. Joris et al., “Clinical application of preimplantation diagnosis for myotonic dystrophy,” Prenatal Diagnosis, vol. 17, no. 10, pp. 925–932, 1997. View at Google Scholar
  115. G. Kakourou, S. Dhanjal, T. Mamas et al., “Preimplantation genetic diagnosis for myotonic dystrophy type 1 in the UK,” Neuromuscular Disorders, vol. 18, no. 2, pp. 131–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. M. de Rademaeker, W. Verpoest, M. de Rycke et al., “Preimplantation genetic diagnosis for myotonic dystrophy type 1: upon request to child,” European Journal of Human Genetics, vol. 17, no. 11, pp. 1403–1410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Dechanet, C. Castelli, L. Reyftmann et al., “Myotonic dystrophy type 1 and PGD: ovarian stimulation response and correlation analysis between ovarian reserve and genotype,” Reproductive BioMedicine Online, vol. 20, no. 5, pp. 610–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Sermon, A. van Steirteghem, and I. Liebaers, “Preimplantation genetic diagnosis,” Lancet, vol. 363, no. 9421, pp. 1633–1641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Sermon, A. de Vos, H. van De Velde et al., “Fluorescent PCR and automated fragment analysis for the clinical application of preimplantation genetic diagnosis of myotonic dystrophy (Steinert's disease),” Molecular Human Reproduction, vol. 4, no. 8, pp. 791–796, 1998. View at Google Scholar · View at Scopus
  120. E. W. Loomis, J. S. Eid, P. Peluso et al., “Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene,” Genome Research, vol. 23, no. 1, pp. 121–128, 2013. View at Google Scholar