Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 394285, 11 pages
http://dx.doi.org/10.1155/2013/394285
Clinical Study

Genetic Variations of α-Methylacyl-CoA Racemase Are Associated with Sporadic Prostate Cancer Risk in Ethnically Homogenous Koreans

1Genitourinary Cancer Branch, National Cancer Center, Goyang 410-769, Republic of Korea
2Center for Prostate Cancer, National Cancer Center, 111 Jungbalsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 410-769, Republic of Korea
3Cancer Biostatistics Branch, National Cancer Center, Goyang 410-769, Republic of Korea
4Cancer Genomics Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 410-769, Republic of Korea
5Molecular Epidemiology Branch, National Cancer Center, Goyang 410-769, Republic of Korea
6Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul 120-752, Republic of Korea

Received 1 August 2013; Revised 7 October 2013; Accepted 9 October 2013

Academic Editor: Sue-Hwa Lin

Copyright © 2013 Sang-Jin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Y. Joung, Y.-S. Lee, S. Park et al., “Haplotype analysis of prostate stem cell antigen and association with prostate cancer risk,” Journal of Urology, vol. 185, no. 6, pp. 2112–2118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Y. Joung, S. Park, H. Yoon et al., “Association of common variations of 8q24 with the risk of prostate cancer in Koreans and a review of the Asian population,” BJU International, vol. 110, no. 6, part B, pp. E318–E325, 2012. View at Google Scholar
  3. S. Perner, F. H. Schmidt, M. D. Hofer, R. Kuefer, and M. Rubin, “TMPRSS2-ETS gene fusion in prostate cancer,” Urologe A, vol. 46, no. 7, pp. 754–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Struewing, P. Hartge, S. Wacholder et al., “The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews,” The New England Journal of Medicine, vol. 336, no. 20, pp. 1401–1408, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Kote-Jarai, A. Amin Al Olama, D. Leongamornlert et al., “Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript,” Human Genetics, vol. 129, no. 6, pp. 687–694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Zheng, J. Sun, F. Wiklund et al., “Cumulative association of five genetic variants with prostate cancer,” The New England Journal of Medicine, vol. 358, no. 9, pp. 910–919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Levin, M. J. Machiela, K. A. Zuhlke, A. M. Ray, K. A. Cooney, and J. A. Douglas, “Chromosome 17q12 variants contribute to risk of early-onset prostate cancer,” Cancer Research, vol. 68, no. 16, pp. 6492–6495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Gudmundsson, P. Sulem, D. F. Gudbjartsson et al., “Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility,” Nature Genetics, vol. 41, no. 10, pp. 1122–1126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Ishak and V. N. Giri, “A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 8, pp. 1599–1610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Zheng, B.-L. Chang, D. A. Faith et al., “Sequence variants of α-methylacyl-CoA racemase are associated with prostate cancer risk,” Cancer Research, vol. 62, no. 22, pp. 6485–6488, 2002. View at Google Scholar · View at Scopus
  11. A. M. Levin, K. A. Zuhlke, A. M. Ray, K. A. Cooney, and J. A. Douglas, “Sequence variation in α-methylacyl-CoA racemase and risk of early-onset and familial prostate cancer,” Prostate, vol. 67, no. 14, pp. 1507–1513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Wright, M. L. Neuhouser, D. W. Lin et al., “AMACR polymorphisms, dietary intake of red meat and dairy and prostate cancer risk,” Prostate, vol. 71, no. 5, pp. 498–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Zha, S. Ferdinandusse, S. Denis et al., “α-Methylacyl-CoA Racemase as an Androgen-Independent Growth Modifier in Prostate Cancer,” Cancer Research, vol. 63, no. 21, pp. 7365–7376, 2003. View at Google Scholar · View at Scopus
  14. C. Prior, F. Guillen-Grima, J. E. Robles et al., “Use of a combination of biomarkers in serum and urine to improve detection of prostate cancer,” World Journal of Urology, vol. 28, no. 6, pp. 681–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Häggarth, C. Hägglöf, S. J. Jaraj et al., “Diagnostic biomarkers of prostate cancer,” Scandinavian Journal of Urology and Nephrology, vol. 45, no. 1, pp. 60–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Ouyang, B. Bracken, B. Burke, E. Chung, J. Liang, and S.-M. Ho, “A duplex quantitative polymerase chain reaction assay based on quantification of α-methylacyl-CoA racemase transcripts and prostate cancer antigen 3 in urine sediments improved diagnostic accuracy for prostate cancer,” Journal of Urology, vol. 181, no. 6, pp. 2508–2514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. N. Mubiru, A. J. Valente, and D. A. Troyer, “A variant of the alpha-methyl-acyl-CoA racemase gene created by a deletion in exon 5 and its expression in prostate cancer,” Prostate, vol. 65, no. 2, pp. 117–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lindström, S. L. Zheng, F. Wiklund et al., “Systematic replication study of reported genetic associations in prostate cancer: strong support for genetic variation in the androgen pathway,” Prostate, vol. 66, no. 16, pp. 1729–1743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. E. Daugherty, Y. Y. Shugart, E. A. Platz et al., “Polymorphic variants in α-methylacyl-CoA racemase and prostate cancer,” Prostate, vol. 67, no. 14, pp. 1487–1497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. FitzGerald, R. Thomson, A. Polanowski et al., “Sequence variants of α-methylacyl-CoA racemase are associated with prostate cancer risk: a replication study in an ethnically homogeneous population,” Prostate, vol. 68, no. 13, pp. 1373–1379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Abdulla, I. Ahmed, A. Assawamakin et al., “Mapping human genetic diversity in Asia,” Science, vol. 326, no. 5959, pp. 1541–1545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Menashe, P. S. Rosenberg, and B. E. Chen, “PGA: power calculator for case-control genetic association analyses,” BMC Genetics, vol. 9, article 36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Ferdinandusse, S. Denis, P. T. Clayton et al., “Mutations in the gene encoding peroxisomal α-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy,” Nature Genetics, vol. 24, no. 2, pp. 188–191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Xu, J. A. Stolk, X. Zhang et al., “Identification of differentially expressed genes in human prostate cancer using subtraction and microarray,” Cancer Research, vol. 60, no. 6, pp. 1677–1682, 2000. View at Google Scholar · View at Scopus
  25. J. Luo, D. J. Duggan, Y. Chen et al., “Human prostate cancer and benign prostatic hyperplasia: Molecular dissection by gene expression profiling,” Cancer Research, vol. 61, no. 12, pp. 4683–4688, 2001. View at Google Scholar · View at Scopus
  26. J. Luo, S. Zha, W. R. Gage et al., “α-methylacyl-CoA racemase: a new molecular marker for prostate cancer,” Cancer Research, vol. 62, no. 8, pp. 2220–2226, 2002. View at Google Scholar · View at Scopus
  27. C. Zhang, R. Montironi, G. T. MacLennan et al., “Is atypical adenomatous hyperplasia of the prostate a precursor lesion?” Prostate, vol. 71, no. 16, pp. 1746–1751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Minner, M. Enodien, H. Sirma et al., “ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy,” Clinical Cancer Research, vol. 17, no. 18, pp. 5878–5888, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. Slager, K. E. Zarfas, W. M. Brown et al., “Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan prostate cancer genetics project,” Prostate, vol. 66, no. 2, pp. 173–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Liu, “Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 9, no. 3, pp. 230–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Zadra, C. Photopoulos, and M. Loda, “The fat side of prostate cancer,” Biochim Biophys Acta, vol. 1831, no. 10, pp. 1518–1532, 2013. View at Google Scholar
  32. A. Schulze and A. L. Harris, “How cancer metabolism is tuned for proliferation and vulnerable to disruption,” Nature, vol. 491, no. 7424, pp. 364–373, 2012. View at Google Scholar
  33. P. Yue and J. Moult, “Identification and analysis of deleterious human SNPs,” Journal of Molecular Biology, vol. 356, no. 5, pp. 1263–1274, 2006. View at Publisher · View at Google Scholar · View at Scopus