Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 406871, 11 pages
http://dx.doi.org/10.1155/2013/406871
Research Article

Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

1Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
2Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
3Department of Biomedical Engineering, School of Engineering, Sun Yat-Sen University, No. 132, East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
4Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, No. 132, East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
5Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215007, China
6Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China

Received 9 June 2013; Accepted 16 July 2013

Academic Editor: Ken-ichi Isobe

Copyright © 2013 Hongliang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Bernal and J. Wendon, “Liver transplantation in adults with acute liver failure,” Journal of Hepatology, vol. 40, no. 2, pp. 192–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. B. Ammori, S. J. Pelletier, R. Lynch et al., “Incremental costs of post-liver transplantation complications,” Journal of the American College of Surgeons, vol. 206, no. 1, pp. 89–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Bierwolf, M. Lutgehetmann, S. Deichmann et al., “Primary human hepatocytes from metabolic-disordered children recreate highly differentiated liver-tissue-like spheroids on alginate scaffolds,” Tissue Engineering A, vol. 18, pp. 1443–1453, 2012. View at Google Scholar
  4. E. Morsiani, P. Pazzi, A. C. Puviani et al., “Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients,” International Journal of Artificial Organs, vol. 25, no. 3, pp. 192–202, 2002. View at Google Scholar · View at Scopus
  5. R. Sakiyama, K. Nakazawa, H. Ijima et al., “Recovery of rats with fulminant hepatic failure by using a hybrid artificial liver support system with polyurethane foam/rat hepatocyte spheroids,” International Journal of Artificial Organs, vol. 25, no. 12, pp. 1144–1152, 2002. View at Google Scholar · View at Scopus
  6. T. Kawahara, D. N. Douglas, J. Lewis et al., “Critical role of natural killer cells in the rejection of human hepatocytes after xenotransplantation into immunodeficient mice,” Transplant International, vol. 23, no. 9, pp. 934–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. Allen and S. N. Bhatia, “Engineering liver therapies for the future,” Tissue Engineering, vol. 8, no. 5, pp. 725–737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K.-D. Lee, T. K.-C. Kuo, J. Whang-Peng et al., “In vitro hepatic differentiation of human mesenchymal stem cells,” Hepatology, vol. 40, no. 6, pp. 1275–1284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Peng, D.-Y. Xie, B.-L. Lin et al., “Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes,” Hepatology, vol. 54, no. 3, pp. 820–828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. B. Rountree, X. Wang, S. Ge et al., “Bone marrow fails to differentiate into liver epithelium during murine development and regeneration,” Hepatology, vol. 45, no. 5, pp. 1250–1260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell, vol. 5, no. 1, pp. 17–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ouchi, K. Otsu, T. Kuzumaki, Y. Iuchi, and K. Ishikawa, “Synergistic induction by collagen and fibronectin of liver-specific genes in rat primary cultured hepatocytes,” Archives of Biochemistry and Biophysics, vol. 358, no. 1, pp. 58–62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Tuleuova, J. Y. Lee, J. Lee, E. Ramanculov, M. A. Zern, and A. Revzin, “Using growth factor arrays and micropatterned co-cultures to induce hepatic differentiation of embryonic stem cells,” Biomaterials, vol. 31, no. 35, pp. 9221–9231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Imamura, L. Cui, R. Teng et al., “Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo,” Tissue Engineering, vol. 10, no. 11-12, pp. 1716–1724, 2004. View at Google Scholar · View at Scopus
  15. B. E. Uygun, A. Soto-Gutierrez, H. Yagi et al., “Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix,” Nature Medicine, vol. 16, no. 7, pp. 814–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science, vol. 294, no. 5547, pp. 1708–1712, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Nagaki, Y. Shidoji, Y. Yamada et al., “Regulation of hepatic genes and liver transcription factors in rat hepatocytes by extracellular matrix,” Biochemical and Biophysical Research Communications, vol. 210, no. 1, pp. 38–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. F. He, X. Chen, and M. Pei, “Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering,” Tissue Engineering A, vol. 15, no. 12, pp. 3809–3821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pei, F. He, and V. L. Kish, “Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential,” Tissue Engineering A, vol. 17, no. 23-24, pp. 3067–3076, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Liu, Y. Gong, K. Xiong et al., “Melatonin mediates protective effects on inflammatory response induced by interleukin-1 beta in human mesenchymal stem cells,” Journal of Pineal Research, vol. 55, pp. 14–25, 2013. View at Google Scholar
  21. J. Li and M. Pei, “Cell senescence: a challenge in cartilage engineering and regeneration,” Tissue Engineering B, vol. 18, pp. 270–287, 2012. View at Google Scholar
  22. F. He and M. Pei, “Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis,” Journal of Tissue Engineering and Regenerative Medicine, vol. 7, no. 1, pp. 73–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Sun, W. Li, Z. Lu et al., “Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix,” FASEB Journal, vol. 25, no. 5, pp. 1474–1485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Mochida, D. Parisuthiman, S. Pornprasertsuk-Damrongsri et al., “Decorin modulates collagen matrix assembly and mineralization,” Matrix Biology, vol. 28, no. 1, pp. 44–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. X.-C. Bai, D. Lu, J. Bai et al., “Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB,” Biochemical and Biophysical Research Communications, vol. 314, no. 1, pp. 197–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. H. Bhogal, S. M. Curbishley, C. J. Weston, D. H. Adams, and S. C. Afford, “Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation,” Liver Transplantation, vol. 16, no. 11, pp. 1303–1313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H.-C. Yu, H.-Y. Qin, F. He et al., “Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling,” Hepatology, vol. 54, no. 3, pp. 979–988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Ji, N. Zhang, N. You et al., “The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice,” Biomaterials, vol. 33, pp. 8995–9008, 2012. View at Google Scholar
  30. J. Li, R. Tao, W. Wu et al., “3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes,” Stem Cells and Development, vol. 19, no. 9, pp. 1427–1436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Izadpanah, D. Kaushal, C. Kriedt et al., “Long-term in vitro expansion alters the biology of adult mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4229–4238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Nagamoto, K. Tashiro, K. Takayama et al., “The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets,” Biomaterials, vol. 33, no. 18, pp. 4526–4534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-W. Lan, T.-W. Liu, S.-M. Kuo, and S.-J. Chang, “Effects of engineered Type I Collagen on hepatocyte cultures,” Current Nanoscience, vol. 7, no. 6, pp. 961–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Kikkawa, N. Takahashi, Y. Matsuda et al., “The influence of synthetic peptides derived from the laminin α1 chain on hepatocyte adhesion and gene expression,” Biomaterials, vol. 30, no. 36, pp. 6888–6895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Hoshiba, N. Kawazoe, and G. Chen, “The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development,” Biomaterials, vol. 33, no. 7, pp. 2025–2031, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. J. Flaim, S. Chien, and S. N. Bhatia, “An extracellular matrix microarray for probing cellular differentiation,” Nature Methods, vol. 2, no. 2, pp. 119–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Damianova, N. Stefanova, E. Cukierman, A. Momchilova, and R. Pankov, “Three-dimensional matrix induces sustained activation of ERK1/2 via Src/Ras/Raf signaling pathway,” Cell Biology International, vol. 32, no. 2, pp. 229–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. M. Xu, O. L. Tavares-Sanchez, Q. Z. Li et al., “Activation of bile acid biosynthesis by the p38 mitogen-activated protein kinase (MAPK): hepatocyte nuclear factor-4α phosphorylation by the p38 MAPK is required for cholesterol 7α-hydroxylase expression,” Journal of Biological Chemistry, vol. 282, no. 34, pp. 24607–24614, 2007. View at Publisher · View at Google Scholar · View at Scopus