Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 420480, 7 pages
http://dx.doi.org/10.1155/2013/420480
Research Article

F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

1Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
2Shanghai Institute of Medical Imaging, Shanghai 200032, China
3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
4Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Received 20 October 2013; Revised 29 November 2013; Accepted 29 November 2013

Academic Editor: Weibo Cai

Copyright © 2013 Dengfeng Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Lundqvist and V. Tolmachev, “Targeting peptides and positron emission tomography,” Biopolymers, vol. 66, no. 6, pp. 381–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Gerard and H. Bleiberg, “Delay in diagnosis of colorectal cancer,” European Journal of Cancer and Clinical Oncology, vol. 23, no. 8, pp. 1089–1090, 1987. View at Google Scholar · View at Scopus
  3. D. Blok, R. I. J. Feitsma, P. Vermeij, and E. J. K. Pauwels, “Peptide radiopharmaceuticals in nuclear medicine,” European Journal of Nuclear Medicine, vol. 26, no. 11, pp. 1511–1519, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. E. Weiner and M. L. Thakur, “Radiolabeled peptides in diagnosis and therapy,” Seminars in Nuclear Medicine, vol. 31, no. 4, pp. 296–311, 2001. View at Google Scholar · View at Scopus
  5. M. Schottelius, T. Poethko, M. Herz et al., “First 18F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography,” Clinical Cancer Research, vol. 10, no. 11, pp. 3593–3606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Laverman, C. A. 'Souza, A. Eek et al., “Optimized labeling of NOTA- conjugated octreotide with F-18,” Tumor Biology, vol. 33, no. 2, pp. 2427–2434, 2012. View at Google Scholar
  7. X. Chen, “Protein and peptide probes for molecular imaging,” Amino Acids, vol. 41, no. 5, pp. 1009–1012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Leuschner and M. Nahrendorf, “Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic,” Circulation Research, vol. 108, no. 5, pp. 593–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bodanszky, A. Bodanszky, Y. S. Klausner, and S. I. Said, “A preferred conformation in the vasoactive intestinal peptide (VIP). Molecular architecture of gastrointestinal hormones,” Bioorganic Chemistry, vol. 3, no. 2, pp. 133–140, 1974. View at Google Scholar · View at Scopus
  10. J. Fahrenkrug and O. B. Schaffalitzky de Muckadell, “Radioimmunoassay of vasoactive intestinal polypeptide (VIP) in plasma,” Journal of Laboratory and Clinical Medicine, vol. 89, no. 6, pp. 1379–1388, 1977. View at Google Scholar · View at Scopus
  11. C. A. Ottaway, “Vasoactive intestinal peptide and immune function,” in Psychoneuroimmunology, R. Ader, D. L. Felten, and N. Cohen, Eds., pp. 225–262, Academic Press, San Diego, Calif, USA, 1991. View at Google Scholar
  12. N. Itoh, K. Obata, N. Yanaihara, and H. Okamoto, “Human preprovasoactive internal polypeptide contains a novel PHI-27-like peptide, PHM-27,” Nature, vol. 304, no. 5926, pp. 547–549, 1983. View at Google Scholar · View at Scopus
  13. J. C. Reubi, S. J. W. Lamberts, and E. P. Krenning, “Receptor imaging of human diseases using radiolabeled peptides,” Journal of Receptor and Signal Transduction Research, vol. 15, no. 1–4, pp. 379–392, 1995. View at Google Scholar · View at Scopus
  14. I. Virgolini, Q. Yang, S. Li et al., “Cross-competition between vasoactive intestinal peptide and somatostatin for binding to tumor cell membrane receptors,” Cancer Research, vol. 54, no. 3, pp. 690–700, 1994. View at Google Scholar · View at Scopus
  15. T. Kiso, S. Ito, T. Ohta, T. Asano, and Y. Nakazato, “Characterization of vasoactive intestinal peptide receptors in canine liver membranes,” Biochemical Pharmacology, vol. 47, no. 2, pp. 241–245, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Virgolini, M. Raderer, A. Kurtaran et al., “Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors,” New England Journal of Medicine, vol. 331, no. 17, pp. 1116–1121, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Virgolini, M. Raderer, A. Kurtaran et al., “123I-vasoactive intestinal peptide (VIP) receptor scanning: update of imaging results in patients with adenocarcinomas and endocrine tumors of the gastrointestinal tract,” Nuclear Medicine and Biology, vol. 23, no. 6, pp. 685–692, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Virgolini, A. Kurtaran, M. Raderer et al., “Vasoactive intestinal peptide receptor scintigraphy,” Journal of Nuclear Medicine, vol. 36, no. 10, pp. 1732–1739, 1995. View at Google Scholar · View at Scopus
  19. C. Hessenius, M. Bäder, H. Meinhold et al., “Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours,” European Journal of Nuclear Medicine, vol. 27, no. 11, pp. 1684–1693, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. V. R. Pallela, M. L. Thakur, S. Chakder, and S. Rattan, “99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies,” Journal of Nuclear Medicine, vol. 40, no. 2, pp. 352–360, 1999. View at Google Scholar · View at Scopus
  21. M. L. Thakur, C. S. Marcus, S. Saeed et al., “99mTc-labeled vasoactive intestinal peptide analog for rapid localization of tumors in humans,” Journal of Nuclear Medicine, vol. 41, no. 1, pp. 107–110, 2000. View at Google Scholar · View at Scopus
  22. P. S. Rao, M. L. Thakur, V. Pallela et al., “99mTc labeled VIP analog: evaluation for imaging colorectal cancer,” Nuclear Medicine and Biology, vol. 28, no. 4, pp. 445–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. W. Moody, J. Leyton, E. Unsworth, C. John, L. Lang, and W. C. Eckelman, “(Arg15, Arg21) VIP: evaluation of biological activity and localization to breast cancer tumors,” Peptides, vol. 19, no. 3, pp. 585–592, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. E. M. Jagoda, L. Aloj, J. Seidel et al., “Comparison of an 18F labeled deravative of vasoactive intestinal peptide and 2-deoxy-2-[18F)fluoro-D-glucose in nude mice bearing breast cancer xenografts,” Molecular Imaging and Biology, vol. 4, no. 5, pp. 369–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Thakur, M. R. Aruva, J. Gariepy et al., “PET imaging of oncogene overexpression using 64Cu-Vasoactive Intestinal Peptide (VIP) analog: comparison with99mTc-VIP analog,” Journal of Nuclear Medicine, vol. 45, no. 8, pp. 1381–1389, 2004. View at Google Scholar · View at Scopus
  26. D. Cheng, D. Yin, G. Li et al., “Radiolabeling and in vitro and in vivo characterization of [18F]FB-[R8,15,21, L17]-VIP as a PET imaging agent for tumor overexpressed VIP receptors,” Chemical Biology and Drug Design, vol. 68, no. 6, pp. 319–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Cheng, D. Yin, L. Zhang, M. Wang, G. Li, and Y. Wang, “Preparation of the novel fluorine-18-labeled VIP analog for PET imaging studies using two different synthesis methods,” Journal of Fluorine Chemistry, vol. 128, no. 3, pp. 196–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Thakur, “Genomic biomarkers for molecular imaging: predicting the future,” Seminars in Nuclear Medicine, vol. 39, no. 4, pp. 236–246, 2009. View at Publisher · View at Google Scholar · View at Scopus