Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 459248, 8 pages
http://dx.doi.org/10.1155/2013/459248
Research Article

On the Difference in Quality between Current Heuristic and Optimal Solutions to the Protein Structure Alignment Problem

1Department of Computer Science, School of Engineering, Pontificia Universidad Católica de Chile, 4860 Avenue Vicuña Mackenna, 6904411 Santiago, Chile
2Department of Computer Science, University of Northern Iowa, 1227 West 27th Street, Cedar Falls, IA 50613, USA

Received 10 September 2012; Accepted 2 November 2012

Academic Editor: Tun-Wen Pai

Copyright © 2013 Mauricio Arriagada and Aleksandar Poleksic. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Poleksic, “Algorithms for optimal protein structure alignment,” Bioinformatics, vol. 25, no. 21, pp. 2751–2756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Subbiah, D. V. Laurents, and M. Levitt, “Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core,” Current Biology, vol. 3, no. 3, pp. 141–148, 1993. View at Google Scholar · View at Scopus
  3. M. Gerstein and M. Levitt, “Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures,” in Proceedings of the 4th International Conference on Intelligent Systems for Molecular Biology, pp. 59–67, AAAI Press, Menlo Park, Calif, USA, 1996.
  4. M. Levitt and M. Gerstein, “A unified statistical framework for sequence comparison and structure comparison,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 5913–5920, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Zhang and J. Skolnick, “TM-align: a protein structure alignment algorithm based on the TM-score,” Nucleic Acids Research, vol. 33, no. 7, pp. 2302–2309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Shapiro and D. Brutlag, “FoldMiner: structural motif discovery using an improved superposition algorithm,” Protein Science, vol. 13, no. 1, pp. 278–294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Singh and D. L. Brutlag, “Hierarchical protein structure superposition using both secondary structure and atomic representations,” in Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 5, pp. 284–293, 1997.
  8. S. B. Pandit and J. Skolnick, “Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score,” BMC Bioinformatics, vol. 9, article 531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America, vol. 4, pp. 629–642, 1997. View at Google Scholar
  10. B. K. P. Horn and H. M. Hilden, “Closed-form solution of absolute orientation using orthonormal matrices,” Journal of the Optical Society of America, vol. 5, pp. 1127–1135, 1998. View at Google Scholar
  11. A. Andreeva, A. Prlić, T. J. P. Hubbard, and A. G. Murzin, “SISYPHUS—structural alignments for proteins with non-trivial relationships,” Nucleic Acids Research, vol. 35, no. 1, pp. D253–D259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Rocha, J. Segura, R. C. Wilson, and S. Dasgupta, “Flexible structural protein alignment by a sequence of local transformations,” Bioinformatics, vol. 25, no. 13, pp. 1625–1631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Menke, B. Berger, and L. Cowen, “Matt: local flexibility aids protein multiple structure alignment,” PLoS Computational Biology, vol. 4, no. 1, article e10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Csaba, F. Birzele, and R. Zimmer, “Protein structure alignment considering phenotypic plasticity,” Bioinformatics, vol. 24, no. 16, pp. i98–i104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Holm, C. Ouzounis, C. Sander, G. Tuparev, and G. Vriend, “A database of protein structure families with common folding motifs,” Protein Science, vol. 1, no. 12, pp. 1691–1698, 1992. View at Google Scholar · View at Scopus
  16. R. Kolodny, P. Koehl, and M. Levitt, “Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures,” Journal of Molecular Biology, vol. 346, no. 4, pp. 1173–1188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Umeyama, “Least-squares estimation of transformation parameters between two point patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Akutsu, “Protein structure alignment using dynamic programming and iterative improvement,” IEICE Transactions on Information and Systems, vol. E79-D, no. 12, pp. 1629–1636, 1996. View at Google Scholar · View at Scopus
  19. S. C. Li and Y. K. Ng, “On protein structure alignment under distance constraint,” in Proceedings of ISAAC, pp. 65–76, 2009.
  20. J. Xu, F. Jiao, and B. Berger, “A parameterized algorithm for protein structure alignment,” Journal of Computational Biology, vol. 14, no. 5, pp. 564–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Kolodny and N. Linial, “Approximate protein structural alignment in polynomial time,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12201–12206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Caprara, R. Carr, S. Istrail, G. Lancia, and B. Walenz, “1001 Optimal PDB structure alignments: integer programming methods for finding the maximum contact map overlap,” Journal of Computational Biology, vol. 11, no. 1, pp. 27–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Ambühl, S. Chakraborty, and B. Gärtner, “Computing largest common point sets under approximate congruence,” in Proceedings of the ESA, vol. 1879 of Lecture Notes in Computer Science, pp. 52–64, 2000.