Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 469363, 12 pages
http://dx.doi.org/10.1155/2013/469363
Methodology Report

wFReDoW: A Cloud-Based Web Environment to Handle Molecular Docking Simulations of a Fully Flexible Receptor Model

1Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Faculdade de Informática (FACIN), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga 6681, Prédio 32, Sala 608, 90619-900 Porto Alegre, RS, Brazil
2Grupo de Pesquisa em Inteligência de Negócio (GPIN), Faculdade de Informática (FACIN), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga 6681, Prédio 32, Sala 628, 90619-900 Porto Alegre, RS, Brazil

Received 6 December 2012; Revised 28 February 2013; Accepted 6 March 2013

Academic Editor: Ming Ouyang

Copyright © 2013 Renata De Paris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformatics? A proposed definition and overview of the field,” Methods of Information in Medicine, vol. 40, no. 4, pp. 346–358, 2001. View at Google Scholar · View at Scopus
  2. I. D. Kuntz, “Structure-based strategies for drug design and discovery,” Science, vol. 257, no. 5073, pp. 1078–1082, 1992. View at Google Scholar · View at Scopus
  3. I. M. Kapetanovic, “Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach,” Chemico-Biological Interactions, vol. 171, no. 2, pp. 165–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Q. Wei, L. H. Weaver, A. M. Ferrari, B. W. Matthews, and B. K. Shoichet, “Testing a flexible-receptor docking algorithm in a model binding site,” Journal of Molecular Biology, vol. 337, no. 5, pp. 1161–1182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. Morris, R. Huey, W. Lindstrom et al., “Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. S. Machado, A. T. Winck, D. D. A. Ruiz, and O. Norberto de Souza, “Mining flexible-receptor docking experiments to select promising protein receptor snapshots,” BMC Genomics, vol. 11, supplement 5, article S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. S. Machado, A. T. Wick, D. D. A. Ruiz, and O. Norberto de Souza, “Mining flexible-receptor molecular docking data,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 6, pp. 532–541, 2011. View at Publisher · View at Google Scholar
  8. J. H. Lin, A. L. Perryman, J. R. Schames, and J. A. McCammon, “The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme,” Biopolymers, vol. 68, no. 1, pp. 47–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Alonso, A. A. Bliznyuk, and J. E. Gready, “Combining docking and molecular dynamic simulations in drug design,” Medicinal Research Reviews, vol. 26, pp. 531–568, 2006. View at Google Scholar
  10. P. Hübler, P-SaMI: self-adapting multiple instances—a data pattern to scientific workflows (in portuguese: P-SaMI: padrão de múltiplas instâncias autoadaptáveis—um padrão de dados para workflows científicos) [Ph.D. thesis], PPGCC-PUCRS, Porto Alegre, Brasil, 2010.
  11. R. De Paris, F. A. Frantz, O. Norberto de Souza, and D. D. A. Ruiz, “A conceptual many tasks computing architecture to execute molecular docking simulations of a fully-flexible receptor model,” Advances in Bioinformatics and Computational Biology, vol. 6832, pp. 75–78, 2011. View at Google Scholar
  12. X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J. Reifman, “DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0,” Chemistry Central Journal, vol. 2, article 18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. D. Prakhov, A. L. Chernorudskiy, and M. R. Gainullin, “VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters,” Bioinformatics, vol. 26, no. 10, pp. 1374–1375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. V. Abreu, H. J. C. Froufe, M. J. R. P. Queiroz, and I. C. F. R. Ferreira, “MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters,” Journal of Cheminformatics, vol. 2, no. 1, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Collignon, R. Schulz, J. C. Smith, and J. Baudry, “Task-parallel message passing interface implementation of Autodock4 for docking of very large databases of compounds using high-performance super-computers,” Journal of Computational Chemistry, vol. 32, no. 6, pp. 1202–1209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Norgan, P. K. Coffman, J. A. Kocher, K. J. Katzman, and C. P. Sosa, “Multilevel parallelization of AutoDock 4.2,” Journal of Cheminformatics, vol. 3, pp. 1–7, 2011. View at Google Scholar
  17. S. R. Ellingson and J. Baudry, “High-throughput virtual molecular docking with AutoDockCloud,” Concurrency and Computation: Practice and Experience, 2012. View at Publisher · View at Google Scholar
  18. “Amazon elastic compute cloud,” http://aws.amazon.com/ec2/.
  19. J. J. Irwin and B. K. Shoichet, “ZINC—a free database of commercially available compounds for virtual screening,” Journal of Chemical Information and Modeling, vol. 45, no. 1, pp. 177–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. R. Kuo, H. R. Morbidoni, D. Alland et al., “Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20851–20859, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. K. Schroeder, L. A. Basso, D. S. Santos, and O. N. De Souza, “Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities,” Biophysical Journal, vol. 89, no. 2, pp. 876–884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, “Scheduling strategies for master-slave tasking on heterogeneous processor platforms,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 4, pp. 319–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. S. Machado, E. K. Schroeder, D. D. Ruiz, E. M. L. Cohen, and O. Norberto de Souza, “FReDoWS: a method to automate molecular dockings simulations with explicit receptor flexibility and snapshots selection,” BMC Genomics, vol. 12, pp. 2–13, 2011. View at Google Scholar
  25. I. Raicu, I. Foster, M. Wilde et al., “Middleware support for many-task computing,” Cluster Computing, vol. 13, pp. 291–314, 2010. View at Google Scholar
  26. A. T. Winck, K. S. MacHado, O. Norberto de Souza, and D. D. Ruiz, “FReDD: supporting mining strategies through a flexible-receptor docking database,” Advances in Bioinformatics and Computational Biology, vol. 5676, pp. 143–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP nodes,” in Proceedings of the 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP '09), pp. 427–436, IEEE Press, Weimar, Germany, February 2009. View at Publisher · View at Google Scholar · View at Scopus