Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 478279, 15 pages
Research Article

Three-Dimensional Supermacroporous Carrageenan-Gelatin Cryogel Matrix for Tissue Engineering Applications

1Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K Birla Goa Campus, Goa 403726, India
2Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India

Received 7 April 2013; Revised 11 June 2013; Accepted 12 June 2013

Academic Editor: Guoping Chen

Copyright © 2013 Archana Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A tissue-engineered polymeric scaffold should provide suitable macroporous structure similar to that of extracellular matrix which can induce cellular activities and guide tissue regeneration. Cryogelation is a technique in which appropriate monomers or polymeric precursors frozen at sub-zero temperature leads to the formation of supermacroporous cryogel matrices. In this study carrageenan-gelatin (natural polymers) cryogels were synthesized by using glutaraldehyde and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride and N-hydroxysuccinimide (EDC-NHS) as crosslinking agent at optimum concentrations. Matrices showed large and interconnected pores which were in the range of 60–100 μm diameter. Unconfined compression analysis showed elasticity and physical integrity of all cryogels, as these matrices regained their original length after 90% compressing from the original size. Moreover Young’s modulus was found to be in the range of 4–11 kPa for the dry cryogel sections. These cryogels also exhibited good in vitro degradation capacity at 37 °C within 4 weeks of incubation. Supermacroporous carrageenan-gelatin cryogels showed efficient cell adherence and proliferation of Cos-7 cells which was examined by SEM. PI nuclear stain was used to observe cell-matrix interaction. Cytotoxicity of the scaffolds was checked by MTT assay which showed that cryogels are biocompatible and act as a potential material for tissue engineering and regenerative medicine.