Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 485837, 7 pages
Research Article

Production of the Quinone-Methide Triterpene Maytenin by In Vitro Adventitious Roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and Rapid Detection and Identification by APCI-IT-MS/MS

1Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista, 14801-970 Araraquara, SP, Brazil
2Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, 18610-307 Botucatu, SP, Brazil
3Departamento de Biotecnologia Vegetal, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil

Received 24 May 2013; Accepted 27 August 2013

Academic Editor: Regina Maria Barreto Cicarelli

Copyright © 2013 Tiago Antunes Paz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 μg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.