Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 537279, 6 pages
http://dx.doi.org/10.1155/2013/537279
Research Article

Cytotoxicity and Genotoxicity Evaluation of Organochalcogens in Human Leucocytes: A Comparative Study between Ebselen, Diphenyl Diselenide, and Diphenyl Ditelluride

Laboratório de Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil

Received 5 October 2013; Accepted 6 November 2013

Academic Editor: Daiana Avila

Copyright © 2013 Diones Caeran Bueno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. F. Combs Jr. and S. B. Combs, “The nutritional biochemistry of selenium,” Annual Review of Nutrition, vol. 4, pp. 257–280, 1984. View at Google Scholar · View at Scopus
  2. D. H. Holben and A. M. Smith, “The diverse role of selenium within selenoproteins: a review,” Journal of the American Dietetic Association, vol. 99, no. 7, pp. 836–843, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. L. V. Papp, J. Lu, A. Holmgren, and K. K. Khanna, “From selenium to selenoproteins: synthesis, identity, and their role in human health,” Antioxidants and Redox Signaling, vol. 9, no. 7, pp. 775–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Zhong, E. S. J. Arnér, and A. Holmgren, “Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5854–5859, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. K. El-Bayoumy, “The protective role of selenium on genetic damage and on cancer,” Mutation Research, vol. 475, no. 1-2, pp. 123–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Alfthan, A. Aro, H. Arvilommi, and J. K. Huttunen, “Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate,” American Journal of Clinical Nutrition, vol. 53, no. 1, pp. 120–125, 1991. View at Google Scholar · View at Scopus
  7. G. P. Bienert, M. D. Schüssler, and T. P. Jahn, “Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out,” Trends in Biochemical Sciences, vol. 33, no. 1, pp. 20–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Taylor, “Biochemistry of tellurium,” Biological Trace Element Research, vol. 55, no. 3, pp. 231–239, 1996. View at Google Scholar · View at Scopus
  9. C. W. Nogueira, G. Zeni, and J. B. T. Rocha, “Organoselenium and organotellurium compounds: toxicology and pharmacology,” Chemical Reviews, vol. 104, no. 12, pp. 6255–6285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Avila, A. Benedetto, C. Au et al., “Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress,” Free Radical Biology and Medicine, vol. 52, no. 9, pp. 1903–1910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Braga, E. E. Alberto, L. C. Soares, J. B. T. Rocha, J. H. Sudati, and D. H. Roos, “Synthesis of telluroamino acid derivatives with remarkable GPx like activity,” Organic and Biomolecular Chemistry, vol. 7, no. 1, pp. 43–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-M. Andersson, R. Brattsand, A. Hallberg et al., “Diaryl tellurides as inhibitors of lipid peroxidation in biological and chemical systems,” Free Radical Research, vol. 20, no. 6, pp. 401–410, 1994. View at Google Scholar · View at Scopus
  13. J. Kanski, J. Drake, M. Aksenova, L. Engman, and D. A. Butterfield, “Antioxidant activity of the organotellurium compound 3-[4-(N,N-dimethylamino)benzenetellurenyl]propanesulfonic acid against oxidative stress in synaptosomal membrane systems and neuronal cultures,” Brain Research, vol. 911, no. 1, pp. 12–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Jacob, G. E. Arteel, T. Kanda, L. Engman, and H. Sies, “Water-soluble organotellurium compounds: catalytic protection against peroxynitrite and release of zinc from metallothionein,” Chemical Research in Toxicology, vol. 13, no. 1, pp. 3–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. De Freitas and J. B. T. Rocha, “Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: a pathway for their neuroprotective effects,” Neuroscience Letters, vol. 503, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Mugesh, A. Panda, H. B. Singh, N. S. Punekar, and R. J. Butcher, “Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study,” Journal of the American Chemical Society, vol. 123, no. 5, pp. 839–850, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Sies, “Ebselen, a selenoorganic compound as glutathione peroxidase mimic,” Free Radical Biology and Medicine, vol. 14, no. 3, pp. 313–323, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Zhao and A. Holmgren, “A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase,” The Journal of Biological Chemistry, vol. 277, no. 42, pp. 39456–39462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Yamaguchi, K. Sano, K. Takakura et al., “Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial,” Stroke, vol. 29, no. 1, pp. 12–17, 1998. View at Google Scholar · View at Scopus
  20. J. I. Rossato, L. A. Ketzer, F. B. Centurião et al., “Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain,” Neurochemical Research, vol. 27, no. 4, pp. 297–303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Sanmartín, D. Plano, and J. A. Palop, “Selenium compounds and apoptotic modulation: a new perspective in cancer therapy,” Mini-Reviews in Medicinal Chemistry, vol. 8, no. 10, pp. 1020–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. W. Nogueira and J. B. T. Rocha, “Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds,” Archives of Toxicology, vol. 85, no. 11, pp. 1313–1359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Ip, H. J. Thompson, Z. Zhu, and H. E. Ganther, “In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention,” Cancer Research, vol. 60, no. 11, pp. 2882–2886, 2000. View at Google Scholar · View at Scopus
  24. N. B. V. Barbosa, J. B. T. Rocha, G. Zeni, T. Emanuelli, M. C. Beque, and A. L. Braga, “Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney, and brain of adult rats,” Toxicology and Applied Pharmacology, vol. 149, no. 2, pp. 243–253, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. R. M. Rosa, D. J. Moura, A. C. Romano e Silva, J. Saffi, and J. A. Pêgas Henriques, “Antioxidant activity of diphenyl diselenide prevents the genotoxicity of several mutagens in Chinese hamster V79 cells,” Mutation Research, vol. 631, no. 1, pp. 44–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Santofimia-Castaño, G. M. Salido, and A. Gonzáles, “Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes,” DNA and Cell Biology, vol. 32, no. 4, pp. 147–155, 2013. View at Google Scholar
  27. B. Comparsi, D. F. Meinerz, J. L. Franco et al., “Diphenyl ditelluride targets brain selenoproteins in vivo: inhibition of cerebral thioredoxin reductase and glutathione peroxidase in mice after acute exposure,” Molecular and Cellular Biochemistry, vol. 370, pp. 173–182, 2012. View at Google Scholar
  28. B. B. Mischell and S. M. Shiingi, Selected Methods in Cellular Immunology, W.H. Freeman, 1980.
  29. A. R. Collins, “The comet assay for DNA damage and repair: principles, applications, and limitations,” Molecular Biotechnology, vol. 26, no. 3, pp. 249–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Farina, M. E. S. Frizzo, F. A. A. Soares et al., “Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice,” Toxicology Letters, vol. 144, no. 3, pp. 351–357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. S. de Freitas, V. R. Funck, M. D. S. Rotta et al., “Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice,” Brain Research Bulletin, vol. 79, no. 1, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Mugesh and H. B. Singh, “Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity,” Chemical Society Reviews, vol. 29, no. 5, pp. 347–357, 2000. View at Google Scholar · View at Scopus
  33. E. N. Maciel, E. M. M. Flores, J. B. T. Rocha, and V. Folmer, “Comparative deposition of diphenyl diselenide in liver, kidney, and brain of mice,” Bulletin of Environmental Contamination and Toxicology, vol. 70, no. 3, pp. 470–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. F. C. Meotti, V. C. Borges, G. Zeni, J. B. T. Rocha, and C. W. Nogueira, “Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice,” Toxicology Letters, vol. 143, no. 1, pp. 9–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Farina, F. A. A. Soares, G. Zeni, D. O. Souza, and J. B. T. Rocha, “Additive pro-oxidative effects of methylmercury and ebselen in liver from suckling rat pups,” Toxicology Letters, vol. 146, no. 3, pp. 227–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. R. Straliotto, G. Mancini, J. De Oliveira et al., “Acute exposure of rabbits to diphenyl diselenide: a toxicological evaluation,” Journal of Applied Toxicology, vol. 30, no. 8, pp. 761–768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Rosa, N. C. Hoch, G. V. Furtado, J. Saffi, and J. A. P. Henriques, “DNA damage in tissues and organs of mice treated with diphenyl diselenide,” Mutation Research, vol. 633, no. 1, pp. 35–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. T. H. Degrandi, I. M. De Oliveira, G. S. D'Almeida et al., “Evaluation of the cytotoxicity, genotoxicity and mutagenicity of diphenyl ditelluride in several biological models,” Mutagenesis, vol. 25, no. 3, pp. 257–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. T. H. Lugokenski, L. G. Mller, P. S. Taube, J. B. T. Rocha, and M. E. Pereira, “Inhibitory effect of ebselen on lactate dehydrogenase activity from mammals: a comparative study with diphenyl diselenide and diphenyl ditelluride,” Drug and Chemical Toxicology, vol. 34, no. 1, pp. 66–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. V. C. Borges, J. B. T. Rocha, and C. W. Nogueira, “Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in rats,” Toxicology, vol. 215, no. 3, pp. 191–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. Saraiva, D. C. Bueno, P. A. Nogara, and J. B. T. Rocha, “Molecular docking studies of disubstituted diaryl diselenides as mammalian δ-aminolevulinic acid dehydratase enzyme inhibitors,” Journal of Toxicology and Environmental Health A, vol. 75, no. 16-17, pp. 1012–1022, 2012. View at Google Scholar
  42. J. B. T. Rocha, R. A. Saraiva, S. C. Garcia, F. S. Gravina, and C. W. Nogueira, “Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations,” Toxicology Research, vol. 1, no. 2, pp. 85–102, 2012. View at Google Scholar
  43. C. F. Yang, H. M. Shen, and C. N. Ong, “Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis,” Archives of Biochemistry and Biophysics, vol. 380, no. 2, pp. 319–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. R. L. Puntel, D. H. Roos, R. L. Seeger, and J. B. T. Rocha, “Mitochondrial transfer chain complexes inhibition by different organochalcogens,” Toxicology in Vitro, vol. 27, pp. 59–70, 2013. View at Google Scholar
  45. S. Roy and D. Hardej, “Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes,” Food and Chemical Toxicology, vol. 49, no. 10, pp. 2564–2574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C.-F. Yang, H.-M. Shen, and C.-N. Ong, “Ebselen induces apoptosis in HepG2 cells through rapid depletion of intracellular thiols,” Archives of Biochemistry and Biophysics, vol. 374, no. 2, pp. 142–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Posser, M. T. De Paula, J. L. Franco, R. B. Leal, and J. B. T. Da Rocha, “Diphenyl diselenide induces apoptotic cell death and modulates ERK1/2 phosphorylation in human neuroblastoma SH-SY5Y cells,” Archives of Toxicology, vol. 85, no. 6, pp. 645–651, 2011. View at Publisher · View at Google Scholar · View at Scopus