Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 538790, 12 pages
http://dx.doi.org/10.1155/2013/538790
Review Article

Improved Succinate Production by Metabolic Engineering

1Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Received 27 November 2012; Revised 12 March 2013; Accepted 17 March 2013

Academic Editor: Eugénio Ferreira

Copyright © 2013 Ke-Ke Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Beauprez, M. de Mey, and W. K. Soetaert, “Microbial succinic acid production: natural versus metabolic engineered producers,” Process Biochemistry, vol. 45, no. 7, pp. 1103–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. K. Cheng, X. B. Zhao, J. Zeng, and J. A. Zhang, “Biotechnological production of succinate-current state and perspectives,” Biofuels Bioproducts and Biorefining, vol. 6, pp. 302–318, 2012. View at Publisher · View at Google Scholar
  3. A. Cukalovic and C. V. Stevens, “Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 6, pp. 505–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Xu and B. H. Guo, “Poly(butylene succinate) and its copolymers: Research, development and industrialization,” Biotechnology Journal, vol. 5, no. 11, pp. 1149–1163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. McKinlay, J. G. Zeikus, and C. Vieille, “Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 6651–6656, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. McKinlay, Y. Shachar-Hill, J. G. Zeikus, and C. Vieille, “Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers,” Metabolic Engineering, vol. 9, no. 2, pp. 177–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. van der Werf, M. V. Guettler, M. K. Jain, and J. G. Zeikus, “Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z,” Archives of Microbiology, vol. 167, no. 6, pp. 332–342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Jantama, M. J. Haupt, S. A. Svoronos et al., “Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate,” Biotechnology and Bioengineering, vol. 99, no. 5, pp. 1140–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. R. Dittrich, G. N. Bennett, and K. Y. San, “Metabolic engineering of the anaerobic central metabolic pathway in Escherichia coli for the simultaneous anaerobic production of isoamyl acetate and succinic acid,” Biotechnology Progress, vol. 25, no. 5, pp. 1304–1309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Kang, C. J. Gao, Q. Wang, H. M. Liu, and Q. S. Qi, “A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli,” Bioresource Technology, vol. 101, no. 19, pp. 7675–7678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Singh, K. C. Soh, V. Hatzimanikatis, and R. T. Gill, “Manipulating redox and ATP balancing for improved production of succinate in E. coli,” Metabolic Engineering, vol. 13, no. 1, pp. 76–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Liu, L. Y. Liang, K. Q. Chen et al., “Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli,” Applied Microbiology and Biotechnology, vol. 94, pp. 959–968, 2012. View at Publisher · View at Google Scholar
  13. S. Y. Lee, S. H. Hong, and S. Y. Moon, “In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example,” Genome Informatics, vol. 13, pp. 214–223, 2002. View at Google Scholar · View at Scopus
  14. Q. Li, D. Wang, Y. Wu et al., “Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT,” Journal of Microbiology, vol. 48, no. 3, pp. 290–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. J. Lee, H. Song, and S. Y. Lee, “Genome-based metabolic engineering of Mannheimia succiniproducens for succinic acid production,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1939–1948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. S. Millard, Y. P. Chao, J. C. Liao, and M. I. Donnelly, “Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli,” Applied and Environmental Microbiology, vol. 62, no. 5, pp. 1808–1810, 1996. View at Google Scholar · View at Scopus
  17. R. R. Gokarn, M. A. Eiteman, and E. Altman, “Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake,” Biotechnology Letters, vol. 20, no. 8, pp. 795–798, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Stols, G. Kulkarni, B. G. Harris, and M. I. Donnelly, “Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose,” Applied Biochemistry and Biotechnology A, vol. 63–65, no. 1–3, pp. 153–158, 1997. View at Google Scholar · View at Scopus
  19. M. I. Donnelly, C. S. Millard, D. P. Clark, M. J. Chen, and J. W. Rathke, “A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol,” Applied Biochemistry and Biotechnology A, vol. 70–72, pp. 187–198, 1998. View at Google Scholar · View at Scopus
  20. G. N. Vemuri, M. A. Eiteman, and E. Altman, “Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli,” Applied and Environmental Microbiology, vol. 68, no. 4, pp. 1715–1727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. N. Vemuri, M. A. Eiteman, and E. Altman, “Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions,” Journal of Industrial Microbiology and Biotechnology, vol. 28, no. 6, pp. 325–332, 2002. View at Google Scholar · View at Scopus
  22. A. M. Sánchez, G. N. Bennett, and K. Y. San, “Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant,” Biotechnology Progress, vol. 21, no. 2, pp. 358–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Sánchez, G. N. Bennett, and K. Y. San, “Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity,” Metabolic Engineering, vol. 7, no. 3, pp. 229–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Sánchez, G. N. Bennett, and K. Y. San, “Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains,” Metabolic Engineering, vol. 8, no. 3, pp. 209–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Lin, R. V. Vadali, G. N. Bennett, and K. Y. San, “Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli,” Biotechnology Progress, vol. 20, no. 5, pp. 1599–1604, 2004. View at Google Scholar · View at Scopus
  26. H. Lin, K. Y. San, and G. N. Bennett, “Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli,” Applied Microbiology and Biotechnology, vol. 67, no. 4, pp. 515–523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Lin, G. N. Bennett, and K. Y. San, “Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield,” Metabolic Engineering, vol. 7, no. 2, pp. 116–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Jantama, X. Zhang, J. C. Moore, K. T. Shanmugam, S. A. Svoronos, and L. O. Ingram, “Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C,” Biotechnology and Bioengineering, vol. 101, no. 5, pp. 881–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Okino, R. Noburyu, M. Suda, T. Jojima, M. Inui, and H. Yukawa, “An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain,” Applied Microbiology and Biotechnology, vol. 81, no. 3, pp. 459–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Verwaal, L. Wu, R. A. Damveld, and C. M. J. Sagt, “Succinate production in a eukaryotic cell,” WO patent 2009065778A1.
  31. Y. Arikawa, M. Kobayashi, R. Kodaira et al., “Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation,” Journal of Bioscience and Bioengineering, vol. 87, no. 3, pp. 333–339, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Otero, D. Cimini, K. R. Patil, S. G. Poulsen, L. Olsson, and J. Nielsen, “Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory,” Plos One, vol. 1, Article ID e54144, 2013. View at Google Scholar
  33. A. M. Raab, G. Gebhardt, N. Bolotina, D. Weuster-Botz, and C. Lang, “Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid,” Metabolic Engineering, vol. 12, no. 6, pp. 518–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, “Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production,” Applied and Environmental Microbiology, vol. 65, no. 7, pp. 2912–2917, 1999. View at Google Scholar · View at Scopus
  35. X. Zhang, K. Jantama, J. C. Moore, L. R. Jarboe, K. T. Shanmugam, and L. O. Ingram, “Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20180–20185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Wang, Q. Li, Z. Y. Song, W. Zhou, Z. G. Su, and J. M. Xing, “High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid,” Journal of Chemical Technology and Biotechnology, vol. 86, no. 4, pp. 512–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. J. Cao, Y. G. Cao, and X. Z. Lin, “Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids,” Journal of Industrial Microbiology and Biotechnology, vol. 38, pp. 649–656, 2011. View at Publisher · View at Google Scholar
  38. J. Du, Z. Y. Shao, and H. M. Zhao, “Engineering microbial factories for synthesis of value-added products,” Journal of Industrial Microbiology and Biotechnologyl, vol. 38, pp. 873–890, 2011. View at Publisher · View at Google Scholar
  39. R. Chatterjee, C. S. Millard, K. Champion, D. P. Clark, and M. I. Donnelly, “Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli,” Applied and Environmental Microbiology, vol. 67, no. 1, pp. 148–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Beauprez, M. R. Foulquie-Moreno, J. Maertens et al., “Influence of C4-dicarboxylic acid transporters on succinate production,” Green Chemistry, vol. 13, pp. 2179–2186, 2011. View at Publisher · View at Google Scholar
  41. Y. P. Chao and J. C. Liao, “Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli,” Applied and Environmental Microbiology, vol. 59, no. 12, pp. 4261–4265, 1993. View at Google Scholar · View at Scopus
  42. I. Martínez, G. N. Bennett, and K. Y. San, “Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain,” Metabolic Engineering, vol. 12, no. 6, pp. 499–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Litsanov, M. Brocker, and M. Bott, “Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate,” Applied and Environmental Microbiology, vol. 78, pp. 3325–3337, 2012. View at Publisher · View at Google Scholar
  44. C. Camarasa, J. P. Grivet, and S. Dequin, “Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways of succinate formation in Saccharomyces cerevisiae during anaerobic fermentation,” Microbiology, vol. 149, no. 9, pp. 2669–2678, 2003. View at Google Scholar · View at Scopus
  45. Y. Arikawa, T. Kuroyanagi, M. Shimosaka et al., “Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae,” Journal of Bioscience and Bioengineering, vol. 87, no. 1, pp. 28–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Kubo, H. Takagi, and S. Nakamori, “Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain,” Journal of Bioscience and Bioengineering, vol. 90, no. 6, pp. 619–624, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Asano, N. Kurose, N. Hiraoka, and S. Kawakita, “Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash,” Journal of Bioscience and Bioengineering, vol. 88, no. 3, pp. 258–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. Raab, V. Hlavacek, N. Bolotina, and C. Lang, “Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p,” Applied and Environmental Microbiology, vol. 77, no. 6, pp. 1981–1989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Kang, L. Du, J. Kang et al., “Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli,” Bioresource Technology, vol. 102, no. 11, pp. 6600–6604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Z. Xu, N. N. Guo, Z. M. Zheng, X. J. Ou, H. J. Liu, and D. H. Liu, “Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae,” Biotechnology and Bioengineering, vol. 104, no. 5, pp. 965–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. K. Cheng, J. Wu, G. Y. Wang, W. Y. Li, J. Feng, and J. A. Zhang, “Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinate using Klebsiella pneumoniae,” Bioresource Technology, vol. 135, pp. 500–503, 2013. View at Google Scholar
  52. C. Y. Du, S. K. C. Lin, A. Koutinas, R. Wang, P. Dorado, and C. Webb, “A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid,” Bioresource Technology, vol. 99, no. 17, pp. 8310–8315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. G. P. da Silva, M. Mack, and J. Contiero, “Glycerol: a promising and abundant carbon source for industrial microbiology,” Biotechnology Advances, vol. 27, no. 1, pp. 30–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. G. Adsul, M. S. Singhvi, S. A. Gaikaiwari, and D. V. Gokhale, “Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass,” Bioresource Technology, vol. 102, no. 6, pp. 4304–4312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Zheng, L. Fang, Y. Xu, J. J. Dong, Y. Ni, and Z. H. Sun, “Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes,” Bioresource Technology, vol. 101, no. 20, pp. 7889–7894, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. X. J. Li, Z. Zheng, Z. J. Wei, S. T. Jiang, L. J. Pan, and S. B. Weng, “Screening, breeding and metabolic modulating of a strain producing succinic acid with corn straw hydrolyte,” World Journal of Microbiology and Biotechnology, vol. 25, no. 4, pp. 667–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. B. Elcio and P. J. Nei, “Succinate production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes,” Journal of Industrial Microbiology and Biotechnology, vol. 38, pp. 1001–1011, 2011. View at Publisher · View at Google Scholar
  58. D. Wang, Q. A. Li, M. H. Yang, Y. J. Zhang, Z. G. Su, and J. M. Xing, “Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation,” Process Biochemistry, vol. 46, no. 1, pp. 365–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Wang, J. Zhu, G. N. Bennett, and K. Y. San, “Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains,” Metabolic Engineering, vol. 13, no. 3, pp. 328–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. B. Zheng, T. Chen, M. N. Zhao, Z. W. Wang, and X. M. Zhao, “Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing,” Microbial Cell Factories, vol. 11, article 37, 2012. View at Google Scholar